UNIVERSITY OF JORDAN
FACULTY OF GRADUATE STUDIES

COMPUTER AIDED DYNAMIC ANALYSIS
OF MECHANICAL SYSTEMS

BY
YOUSEF K. KH. SHASHANI

,\Syf
\M
\)\J>
N

W e
IR (I KWy

SN =
SUPERVISED BY :
0 DR. MOHAMMAD H. F, DADO

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING,
FACULTY OF GRADUATE STUDIES, UNIVERSITY OF JORDAN

NOVEMBER, 1993

|
J‘Universi ty of Jordan - Center of Thesis Deposit

All Rights Reserved - Library



THIS THESIS WAS DEFENDED SUCCESSFULLY ON 16/11/ 1993

COMMITTEE MEMBERS SIGNATURE
1. Dr. Mohammad H. F. Dado ... z%‘?,"'—

2. Dr. Sa'ad Habali U/c ZJ@[W/&

3. Dr. Mazen Al-Qaisi M : g&&@c{.

ii

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



iv

ACKNOWLEDGMENT

I would like to thank Dr. Mohammad Dado for his encouragement,
guidance, and help during my work on this thesis, and for being patient
with me.

A special thank for the people in the computer lab for their

cooperation.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



CONTENTS

Chapter Page
COMMITTEE DECISION it
DEDICATION iii
ACKNOWLEDGMENT iv
LIST OF CONTENTS v
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF APPENDIXES xii
LIST OF SYMBOLS xiii
ABSTRACT Xv
INTRODUCTION 1
THE MODELING TECHNIQUE 3
2.1  Definitions 3
2.2 Modeling Steps 5
THE SOLUTION TECHNIQUE 13
3.1  Kinematic Analysis 13

3.1.1 Loop Constraints Equations And Their Derivatives 13
3.1.2 Time-Dependent Motion Generators And Their
Partial Derivatives 17
3.1.3 Spatial and Length Constraints And Their
Partial Derivatives 18
3.1.4 Displacement Analysis 20
3.1.5 Velocity Analysis 21
3.1.6  Acceleration Analysis 22
3.2 Forward Dynamic Analysis 22
3.2.1 Line Element 22
3.2.2 The Global System 25

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Vi

Chapter Page

3.2.3 Element Forces and Moments 25
3.3  Static Analysis 26
3.4  Inverse Dynamic Analysis 26
3.5  Static Equilibrium Position Analysis 31
3.5.1 The Derivation Of The Static Equilibrium Equations 31
3.5.2 The Numerical Solution Procedure 34
IV. INPUT DATA PREPARATION AND PROGRAM STRUCTURE. 35
4.1  The Input Data | 35
4.1.1 The Characteristic Data 35
4.1.2 The Element Data 37
4.1.3 The Closed Loop Data 38
4.1.4 The Joint Data 38
4.1.5 The Variable Mass Data 39
4.1.6 The Primary Coordinates Data 39
417 Initial Condition-Estimate-Data 41

42  The Data Input for the Constraints, Loads And Driving
Forces And Torques 41
42.1 The User Constraints 45
422 The User Loads 48
42.3 The Known Driving Forces And Torques 49
43  Program Structure. 49
V. ILLUSTRATIVE EXAMPLES 59
Example 1 : A Simple Pendulum 60
Example 2 : Double Pendulum 66
Example 3 : Automobile on a Rough Road 71
Example 4 : Disk Cam with Radial Flat-Faced Follower 81
Example 5 : A 3-R Mixed-Loop Planar Robot 87
Example 6 : A Slider Crank Mechanism 98

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



vil

Chapter Page
Example 7 : A 3-R Robot under Gravity Effect 104
Example 8 : An Application to the Human Spine 108

VI. CONCLUSIONS AND RECOMMENDATIONS 114

REFERENCES 116

APPENDIXES
Appendix A. 118
Appendix B. 133
ABSTRACT IN ARABIC 147

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



viil

LIST OF TABLES

Page

Table
51

1S00eJ SISy L JO eD - Ueplor JOo AYISeAIUN JO Akeld!T - PaAIRSaY SIYDIY ||V

109

The Loading Sets on the Spine



LIST OF FIGURES

ix

Figure Page
1. A Six-bar Mechanism and Description of the Elements [1]. 6
2. Types of Freedoms for Deferent Types of Joints.

Broken-Line Arrows are restrained Freedoms [1]. 8
3. An Inverted Slider-Crank Mechanism That Illustrates the

Occurrence of Variable Length Elements {1]. 11
4, A Generai Form of a Closed-Ldop[l]. 14
5. An Eight-bar Mechanism That Illustrates the Model Parameters [1]. 16
6. A 2R Robot to Illustrate the Use of Path Constraints and Virtual

Elements [1]. 19
7. The Parameters of a General Element [1]. 23
8. A Six-bar Mechanism to Illustrate the Preparation of The

Input Data [1]. 36
9. A Slider-Crank Mechanism Driven With Known Torque at O, {1]. 40
10.A The Flow Chart of the Computer Program. 51
10.B The Flow Chart of the Computer Program (Continued). 52
10.C The Flow Chart of the Computer Program (Continued). 53
11.A  The Main Window of the DAMES Program. 55
11.B  The Numerical Data Input Editor of the DAMES Program. 56
11.C  The Results Presentation Window of the DAMES Program. 57
11.D The Simulation Window of the DAMES Program. 58
12. A Simple Pendulum. 62
13.  The Time History of the Coordinate @, without Damping. 63
14.  The Time History of the Coordinate ¢, with Half-Critical Damping. 64
15.  The Time History of the Coordinate ¢, with Critical Damping. 65
16.  The Double Pendulum. | 68
17.  The Time History of the Coordinate ¢,. 69

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Figure Page
18. The Time History of the Coordinate @,. 70
19.A. The Car and its 2-D Model[1]. 74
19.B. The Finite Element Model of the Car [1]. 74
20.  The Path of Joint 5 in the XY Plane. 75
21.  The Time History of the Coordinate @, 76
22.  The Time History of the Coordinate @-. 77
23.  The Time History of the Axial Force of Element No.3. 78
24.  The Time History of the Axial Force of Elerﬁent No.8. 79
25.  The Path of Joint 5 as Given by DYMAC (Compare This with

Figure (20) ) [1]. 80
26.A. The Disk Cam with Radial Flat-Faced Follower. [11] 83
26.B. The Finite Element Model of the Disk Cam with the Follower. 83
27.  Sketch of the Displacement Diagram. [11} 84
28.  The Time History of the Coordinate @,. 85
29.  The Time History of the Axial Force of Element No.1. 86
30. A 3R Mixed-Loop Robot. [1] 89
31.  The Time History of the Coordinate ¢,. 90
32.  The Time History of the Coordinate ¢;. 91
33.  The Time History of the Velocity of @, (@, ). 92
34, The Time History of the Velocity of (). 93
35.  The Time History of the Acceleration of ¢, (,). 94
36.  The Time History of the Acceleration of (). 95
37.  The Time History of the Driving Torque T}. %6
38.  The Time History of the Driving Torque T3. 97
39.  The Finite Element Model of the Slider Crank Mechanism. 102
40.A. The Mechanism Configuration at the Initial Guess. 103
40.B. The Static Equilibrium Configuration of the Mechanism. 103
41, A 3R Robot Under Gravity Effect. 105

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Figure Page
42 A. The Mechanism Configuration at the Initial Guess. 106
42.B. The Static Equilibrium Configuration of the Mechanism. 107
43,  The Finite Element Model of the Lumbar Region of the

Human Spine. {1] - 110
44,  The Configuration of the Spine at the Initial Guess. 111
45.A. The Static Equilibrium Configuration of the Spine for

Loading Set No.l. 112
45B. The Static Equilibrium Configuration of the Spine for

Loading Set No.2. 113

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



LIST OF APPENDIXES

xii

Appendix Page
A The Listing of the Input Data For the Eight Example Problems. 118
B. The Listing of the Input Data For the Constraints, External Loads, and

the Driving Forces and Torques For the Eight Example Problems. 133
C. The Listing of the Analysis Part of the Computer Program. 147

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



xiit

LIST OF SYMBOLS

Symbol Description

a, b c d L, Constant; length

C Coefficients in virtual work expression; coefficient of viscous damping
Ce Constant; coefficient of critical viscous damping

dpse(i) The derivative of path constraint / with respect to time
dpte(ij) The derivative of ptc(i,j) with respect to time

dptc(i) The derivative of pttc(i) with respect to time

f Loop constraint

Jpe(®) Driving force or torque

F Constraints' residuals equations

g Time dependent motion generator; local acceleration of gravity
h Number of time dependent motion generators

J Jocobian

K Global stiffness matrix

K, Element stiffness matrix

L Length

M Number of varying coordinates

M, Number of primary freedoms

ntc Constant; number of time dependent motion generators
nsc Constant; number of time path and length constraints
N;,N,,.Ng Elastic freedoms numbers

N, Number of elements in loop &

Ny Number of active freedoms

psc(i) Path and length constraint

pre(isj) The partial derivative of rcfi) with respect to coordinate j
pitc(i) The partial derivative of fc(i) with respect to time

P Global loading vector; externally applied load

Element loading vector

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Symbol Description

q Varying coordinates; number of closed loops
a4 Independent varying coordinate

r Virtual displacement

S Path constraint

!, tm Time

te(i) Timerdependent motion generator

usl(i) Externally applied load in the direction of freedom number
w Number of pﬁth and length constraints

W Virtual work

X Global deflection vector

X, Element deflection vector

a y Angles

a Angular acceleration

@ Varying coordinate

6 Orientation

6, Constant; ortentation

) Angular velocity

Xiv

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



ABSTRACT

COMPUTER AIDED DYNAMIC ANALYSIS
OF MECHANICAL SYSTEMS

Prepared by: Yousef K. Kh. Shashani

Supervised by: Dr. Mohammad H. F. Dado

A general purpose computer program that performs dynamic and static analysis of
two dimensional mechanical systems is developed and presented in this thesis. The
program uses automatic formulations of the kinematic and dynamic equations

developed in an earlier report by Dr. Mohammad Dado [1].

The modeling technique used can describe any planar mechanism with arbitrary

constraints and motion generators.

This program is capable of performing kinematic analysis, dynamic analysis, static

analysis, and static equilibrium position analysis.

Kinematic analysis involves the computations of the positions, velocities and

accelerations of the mechanism links and joints.

Two types of dynamic analysis are considered: forward and inverse analysis. In
forward dynamic analysis, the driving forces and torques are known, but the motion
they generate is unknown. In both types of analysis, the deflections and reactions at
the mechanism joints are computed. In inverse dynamic analysis, the configuration
of the mechanism can be determined by solving the kinematic equations directly.
Static analysis involves the computation of the joints deflections and reactions for

stationary structures.

In static equilibrium position analysis, the static configuration of the mechanism
under the action of static forces and/or torques is unknown. This kind of problem

is solved using the virtual work principle and an iterative procedure.
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CHAPTER 1

INTRODUCTION

Using computers and computer software in the area of machine design, the design
engineer can test his design efficiently and accurately, before building a prototype, and

thus reducing both time and cost needed to complete the design.

In this thesis, a general-purpose dynamic analysis program is developed. Part of
the program was developed in an earlier report by Dr. Mohammad H. F. Dado [1].
The program is capable of performing kineto-elasto-static analysis of any planar
‘mechanism. The modeling technique can describe any two-dimensional mechanism
with arbitrary constraints and time-dependent motion generators. The great advantage
of this program is in its continuous elastic model of the links. The configuration of the
mechanism can be open-loop, closed loop, or mixed loop. This program utilizes a
Graphic User Interface Environment in its input and output operations and requires no
preprogramming, and an equation parser has been added to it, so that there will be no
need for re-compilation. Thus the program is designed to be a stand-alone package.

The program is capable of performing kinematic analysis, dynamic analysis, static
analysis and static equilibrium position analysis. Two types of dynamic analysis are
considered, forward and inverse analysis. The program isimplemented on a personal
computer. Also the program is going to be used for the solution of some problems,
where several case-studies are going to be considered, and the results will be

discussed.

Type of work and Equipment needed:

All the work is going to be theoretical, and the equipment needed is an IBM PC/AT
Personal Computer or compatible.

Survey:

Several general-purpose dynamic analysis programs were developed by various
universities. In the late 1960's the University of Michigan started the development of
two such programs, DRAM (Dynamic Response of Articulated Machinery) and
ADAMS (Automatic Dynamic Analysis of Mechanical Systems) [2]. DRAM was
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developed for two-dimensional mechanical systems, while ADAMS was developed for
three-dimensional mechanical systems. Langrangian equations of motion with
constraints are the bases of the dynamic analysis of DRAM. DRAM is an interactive
program which requires no equation solving and no preprogramming. The ADAM

program follows the same procedure in the dynamic analyss.

Integrated Mechanisms Program (IMP) [3] is another advanced program in the
area of dynamic analysis. IMP performs the dynamic analysis for three-dimensional
closed-loop mechanisms. It utilizes matrix coordinate transformation through the joints
of each loop to perform kinematic analysis. The concept of ﬁmm work is used to
complete the dynamic analysis and determine internal joint forces. IMP also performs
static analysis in which it determines the equilibrium configuration of the mechanism

under a given loading condition,

Burton Paul and A. Amin, at the University of Pennsylvania, developed a
dynamic analysis program called Dynamic of Machine (DYMAC) [4]. It was developed
for planar mechanisms and it can accommodate arbitrary constraints due to higher
pairs and motion generators. The program uses Langrange's form of d'Alemberts

principle to formulate the differential equations of motion.

In 1984, Dr. M. Dado developed a general-purpose dynamic analysis program [1].
It analysis two dimensional mechanisms with elastic links. The program accepts
arbitrary constraints and time-dependent motion generators. It utilizes matrix
displacement method in structural analysis to solve for the intefnal joints reactions
and link deflections., Also, it uses the gross motion analysis procedure developed
by C. Bagci [5] to solve the forward dynamic problem, where the driving forces are
known and the mechanism motion parameters are unknowns. The program is capable
of performing kineto-elasto-static analysis of any planar mechanism. This program is

the basis of this thesis, with additions and modifications added to it , such as the
ability to perform static equilibrium position analysis. Also, the program was re-

written in the 'C' programming language and a powerful user interface has been

developed.
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CHAPTER 11

THE MODELING TECHNIQUE

In this chapter, the modeling technique is discussed, in which the mechanism
properties are described. The modeling technique was developed in an earlier
report by Dr. Mohammad Dado [1]. There are two major parts in the modeling
technique. The description of the mechanism topological characteristics and the
description of its constraints, external loads, and driving forces and torques. Before we

move to the modeling steps, some basic definitions must be discussed.

2.1 Definitions

Varyving Coordinates: The configuration of the mechanism at any time is descried
by its varying coordinates. These coordinates represent either angular or linear

variables. They are labeled as @), @, .., @, where M is the number of varying

coordinates.

Kinematic Closed-I.oop: Any mechanism can be described by a closed loop or a
combination of closed loops. Each loop consists of a series of connected links and it
must be independent from other loops. Loop independence means that every loop
must contain at least one moving link which is different from the links of other loops

and this loop cannot be represented by a linear combination of other loops.

rimary and Ordinary Coordinates: the primary coordinate is the varying

coordinate which is associated with a driving force or torque and its position, velocity,
and acceleration are only determined by solving the dynamic equations of the
system. And the ordinary coordinate is the varying coordinate which its position,

velocity, and acceleration are determined using the constraints equations.

Dependent_and Independent Coordinates; These terms are used in static
equilibrium position analysis. Dependent coordinates can be determined by solving
the loop constraints equations directly given the values for the independent coordinates.
Independent coordinates are the necessary coordinates to detertﬁine the system

configuration, their number is equal to the number of degrees of freedom of the system.
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Links and Elements: Mechanisms consists from combination of links and
kinematic pairs. A link may have two or more ends on which kinematic pairs can
be located. A link also has a mass and 2 mass moment of inertia. An element is a
weightless, straight-line which is used to construct a link in combination with other

elements.

Elastic Elements: Elastic elements are those elements which experience

deflections at their ends when loaded. The elastic properties of these elements are:
length, orientation, cross-section area and its area moment of inertia, and modulus of
elasticity. -

Element Freedoms: The element freedoms describe a11 possible elastic motions
which can be experienced by both ends of an elastic element. At each end there are two
linear freedoms and one rotational freedom. The coordinate system describing these
freedoms can have any relative orientation with respect to a fixed frame. The
element freedoms are numbered locally from 1 to 6 and they are given global numbers

also. The inertial and external loads are applied in the direction of these freedoms.

Time-dependent Constraints: Time-dependent constraints relate one varying

coordinate or more to time. These relations can be established through the velocity and
acceleration with which certain coordinates are driven. These constraints are provided

in equation form and they are specified by the user of the program.

Spatial Constraints: Spatial  constraints relate the varying coordinates with
each other. These constraints arise when, for example, some point in the mechanism
has to trace a defined path or the length of some elements are related by certain

equalities. 4 3 1 8 2 U

Applied Loads: The applied loads are the set of forces and torques that the
mechanism is subjected to. They are appliedin the direction of elemental freedoms.
They can be functions of time or the positions and velocities of certain coordinates.

They allow the introduction of spring forces and dampers.

Known Driving Forces and Torques: The known driving forces and torques

are associated with the primary coordinates. They are applied in the direction of
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elemental freedoms, where the motion described by the primary coordinates is in the

same direction of the elastic motion represented by the elemental freedoms.

Kinematic analysis: In Kinematic analysis, the values of the varying coordinates

are determined at a given instant of time along with their first and second time
derivatives. The positions, velocities, and accelerations of specified points on the
linkage are also determined.

Inverse Dynamic Analysis: In inverse dynamic analysis the linkage is driven with
known motion generators. The kinematic parameters can be solved for at any specified
time along with tﬁe inertial loads. Thé purpose of this analysis is to determine the
joint relations, element internal loads, and element deflections.

Forward Dynamic_Analysis: Forward dynamic analysis is similar to the inverse
dynamic analysis in its final goal. However, the motion generators which are
driving the linkage are unknowns. Instead, the driving forces or torques are known
functions of time or linkage parameters.

Static Analysis: Static analysis is similar to structural analysis where the joint and
ground reactions are determined for a stationary frame subjected toaéystem of
external and internal loads.

Static _equilibrjum position_analysis: In static equilibrium position analysis,
the static configuration of a system of rigid bodies, subjected to a set of constraints
and acted upon by static loads, is determined.

2.2 Modeling Steps

The modeling technique is divided into twelve steps. These steps are illustrated

through several examples. The following is the discussion of these steps.
Step 1: Identify the Mechanism Coordinates
The coordinates are those parameters that describe the configuration of the

mechanism at any time. Consider the mechanism shown in Figure (1), there are five

coordinates. Coordinates ¢,-@, describe the angular orientations of links a, b, ¢ and

d with respect to the fixed frame x-y. Coordinate @; represents the position of the

slider with respect to a fixed point along its path. The order in which the coordinates
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Figure (1) A Six-bar Mechanism and Description of the Elements [1].



are numbered is arbitrary if kinematic and inverse dynamic analysis are performed. In
forward dynamic analysis the primary coordinates are numbered last. For example, if

the mechanism in Figure (1) is driven with known torque at O, , the coordinate

representing the angular position of link a will be @5 .

Step 2: Identify the elements

An element of a mechanism is identified by a number and direction. It does not
have to be a physical element. It can be introduced in a manner that provides
convenience in description. In Figure (1), elements 9, 10, and 11 are introduced to
" conveniently describe the mechanisms closed-loops.
Step 3: Identify the Closed Loo

Any mechanism can be represented by one or more closed loops. For open loop
mechanisms or robots, the loops are closed by virtual elements which may vary in
length and/or orientation. The virtual elements' lengths and orientations are described
by coordinates which satisfy the constraints equations of the mechanism or robot.
For convenience the loops are always traced in the clockwise direction. Consider the
mechanism shown in Figure (1), there are two closed loops. Loop 1 consists of
elements 1, 2, 3, and 4. Loop 2 consists of links 1, 5, 6, 7, 8, 9, 10, and 11.
Step 4: Identify the Joints of the Mechanism

The elements of the mechanism are connected by joints. These joints are identified

using numbers which may be assigned in any convenient order. Joints may be
introduced within any link as a point of interest, where masses and mass moments of
inertia of the links can be lumped or information are needed. These information are like
position, velocity, acceleration, deflection, and internal forces at the joint location.
For the mechanism shown in Figure (1), there are 9 joints. Joints 5 and 7 represent
points of interest at links d and e.
Step 5: Identify the Flastic Freedoms

Elastic freedoms describe the elastic motions at the ends of each elastic element.
The assignment of freedoms depends on the kinematic pair and type of constraints

present at the ends of the element. Figure (2) shows different types of kinematic and
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The sliding and rotational freedom for elzments S and 5 are
29 independent from those for elerment 2,
|
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Figure (2) Types of Freedoms for Deferent Types of Joints. Broken-Line Arrows are

restrained Freedoms [1].
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rigid pairs and how the elastic freedoms are assigned. The numbering of these
freedoms plays an important role. The unrestrained freedoms which are also called

active freedoms are numbered first from 1 to N » »Where N p is the number of

active freedoms. The primary freedoms in which direction the driving forces and

torques are applied are numbered next from N, +1 to N, + M, where M, isthe

number of primary freedoms. Finally, the completely restrained freedoms are numbered

with the same number which is N, + M, + 1 . If virtual elements are present, their

elastic freedoms need not be considered and their numbers are taken as 0.
Step 6: Tdenﬁ& the Elastic Properties of the Elements

The elastic properties of an element consist from its length, cross-section area
and area moment of inertia, and modulus of elasticity. These properties must be

provided for each element.

Step 7:_Identify the Inertial Properties of the system

The mass and mass moment of inertia for each link are introduced by lumping them
at the proper location within the link. The link with the lumped mass must be
dynamically equivalent to the actual link. This dynamic equivalence is achieved if
the following conditions are satisfied.

1. The mass of the link is equal to the lumped mass.
2. The center of mass of the link coincides with the location of the

lumped mass. |
3. The mass-moment of inertia about the center of mass is assumed to be

the lumped mass-moment of inertia.

Constructing the link from two or more elements allows these conditions to be
satisfied.

Step 8: Model the Moving Slider Path

In some mechanisms with prismatic joints, the path of the slider may be a moving

link. Modeling such mechanisms for dynamic analysis using the line element technique

is done by the following procedure. Treat the straight portions of the moving link

between the slider location and any other joint on the path as separate links. These
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links are variable in length and orientation. Lump the masses and mass moment of
inertia at the proper locations for these variable length links. Consider the length of
each element in these links as a varying coordinate. The lumped inertia is also
varying and it is determined by these varying coordinates. The variable lengths of the
elements are related by length constraints equations which must be introduced in the
user constraints. To illustrate this procedure, consider the inverted slider crank
mechanism shown in Figure (3). The moving slider pathrepresented by a varying

coordinate. These coordinates are related by three equations. These equations are:

Q3+ Qs+ Qs+ ps=1, , (2)

P3=@s » (b)
and

Ps = @g (©

Equations b and ¢ are obtained by considering that the inertia is lumped at the
midpoints of the variable length links.
Step 9: Model The Time-Dependent Motion Generators

Mechanisms can be driven with time-dependent motion generators where the
motion of the input parameters are known functions of time. The most general form of
these functions is

201,000 @ynt) =0, e=12, h.

where h is the number of time-dependent motion generators constraints equations. The
functions g and their partial derivatives with réspect to @’s and ¢ and the total time
derivatives must be supplied by the user. This way of modeling allows the use of
general functions and do not restrict the user to any specified form. |

Step 10: Model Path and Length Constraints

Path and length constraints relates the varying coordinates with each other.

These relations are given in equation form. The most general form is

S, =(@,@yyes @) =0,7=12,.,w.
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Figure (3) An Inverted Slider-Crank Mechanism That Illustrates the Occurrence of
Variable Length Elements [1].
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where W is the number of such constraints equations. The functions S, and their

partial derivatives with respect to ¢'s and the total time derivatives of those partial

derivatives must be provided by the user.

Step 11: Identify the Externally Applied [oads

Mechanisms may be subjected to external loads. Thé magnitudes and directions of
the external loads may depend on time, coordinates positions and velocities. Spring
and damper forces are modeled by theuse of external loads. The external loads are
applied at joints and their directions are defined by freedoms present at these joints.
" The functions representing the applied loads are identified by numbers. of these
freedoms. For the mechanism shown in Figure (2), let the force F'=5—2¢1b be
applied at the midpoint of the connecting rod and in the horizontal direction. Then at
freedom #15 the external load is given as

P=5-2t
Step 12: Model the Driving Forces and Torques

The location and direction of the driving forces and torques are defined by the
mechanism  primary coordinates and primary elastic freedoms. The function
representing the driving force and torque can be in terms of time, position, and velocity
of the varying coordinates. This allows the introduction of preloaded springs as driving
forces or torques.

These are the modeling steps for a general problem which includes all the features
of the program. Actual problems need a certain combination of these steps, for
instance, the kinematic analysis requires only steps 1,2,3,4,9 and 10. In static analysis

only steps 1,2,5,6 and 11 should be considered.
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CHAPTER 111
THE SOLUTION TECHNIQUE

In this chapter, four types of analysis are discussed: Kinematic analysis,
dynamic analysis, static analysis and static equilibrium position analysis. Two types
of dynamic analysis problems are considered; forward and inverse analysis . Static
analysis is a part of the inverse dynamic analysis. The solution techniques to these
problems are discussed in the following sections.

3.1 Kinematic Analysis [1]

The number of varying coordinates that describe the motion of a mechanism and
the number of constraints equations must be equal. There are three types of constraints
in the kinematic analysis:- (1) closed-loop constraints, (2) time-dependent motion
generators constraints, (3) spatial constraints. The equations representing these
constraints are expressed in terms of the varying coordinates. The solution of these
equations and the solution of the equations representing their partial derivatives with
respect to the varying coordinates and time, provide the positions, velocities and
accelerations of the moving links. The following subsections discuss the formulation
of the constraint equations for each type of constraint.

3.1.1 Loop Constraints Equations and Their Derivatives

Consider any loop k in a mechanism, let this loop consist of N, elements. Each

element has its own length and orientation with respect to a fixed frame of reference,

see Figure (4). L; and 6. are the length and orientation of the i -th element. For the

k-thloop there are two constraints equations. These equations are:

N
S =2 Lcosf, =0 M
i=1
and
N
far =2 L;sing; =0 2

i=}
For a general element / the length and orientation are given as

Lx' = Lcj i ¢n (3)
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Figure (4) A General Form of a Closed-Loop{1].



and
8!' = 9{:!- X gom (4)

where L. and Gq_ are the constant components of the length and orientation
respectively, ¢, and gbm are the varying components of the length and orientation.
@, and @,  refer to the varying coordinates describing the configuration of the
mechanism. To illustrate the loop constraints equations, consider the mechanism shown

in Figure (5). Loop 1 consists from elements 1,5,6,7, and 8. The varying coordinates

of the mechanism are @y,(@,,....,@s . The length of element 1 is

Li=a+0
and its orientation is

6, =0+ ¢
For element 3

Ly=b+0
and

6, =180 + ¢,

For element 5
Li=e+ o,
and
6, =(180° - o)+,
The partial derivatives of the closed-loop constraints equations with respect to
the varying coordinate assist in solving for the positions, velocities, and
accelerations of the links of the mechanism. For the k-th closed-loop these partial

derivatives are obtained as

T _
e =%"§. cosb, (5)
ap, Zl
N
Tt 5 5, 5in6, ©
ébn i=]
Ni
@=Z_5Mrﬁ.sinq )
Py i=l
Tt =35, 1,005 ®
¢m l'=1
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Figure (5) An Eight-bar Mechanism That Illustrates the Model Parameters [1].
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where &, is 1if the i-th element has @, as its varying component for L; and similarly

5

im 18 1 if the i-th element has @,, as its varying component for 6, . §,, and &, are 0
otherwise.

The total time derivatives of the partial derivatives of the closed-loop constraints
equations is needed to obtain the accelerations of the varying coordinates. Those total

time derivatives are obtained by differentiating equation 5 through 8 with respect to

time. They are obtained as

i% g‘ Oin P, SING, (9)
i% % &, COS 6, (10)
%%=§i_d (6@, sin6, + Lip,, cos ] (11)
;gj" Z1 8,12, €086, — Liip, sin6)] 12

3.1.2 Time-Dependent Motion Generators and Their Partial Derivatives
The time-dependent motion generators constraints equations are general
functions of time. An example of this type of constraints is the motion of the input link of

the mechanism shown in Figure (5) which could be given as
1 2
gout= oyt +‘5 ot”+¢ - =0

where @; and ¢ are the angular velocity and angular acceleration of the input link and

@, is the initial value of @,.

The partial derivatives of these constraints equations with respect to time is

specified by the user. Therefore

& _
p,
and
&0,  r=2..M
ap,
Also
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The total time derivatives of the partial derivatives are also specified by the user.

For the illustrative example they are

a& _,
dt o,

4%&_,
ata

3.1.3 Spatial and Length Constraints and Their Partial Derivative
The path and length constraints equations are general functions relating the
varying coordinates with each other. An example for the path constraint is the specified

motion of the end effector of a robot. Figure (6) shows a 2r robot with its end effector
tracing an elliptical path. The coordinates @5 and ¢, are related by

v 2 2
(@ 2Xo) +(¢4b2Yo) _1=0

The derivatives of the path constraints equations with respect to the

S(@s 04) =

coordinates and the total time derivatives of those partial derivatives are specified by

the user, For the example shown in Figure (6) the partial derivatives are

7o) ,
——=2b"(p; ~ X)
op;

J7s)
5— = 202(% -1)
('

In the case of path and length constraints there is no partial time derivatives.

The total time derivatives are

drép3 T ?
i_é‘iz a2¢7
dt Gp, )

The length constraints equations are like those given in the example in Chapter I
where the varying coordinates of the mechanism shown in Figure (3) is related with 3
constraint equations.

These are the three types of constraints considered in the kinematic analysis.
The resulting set of equations relating the varying coordinates and their derivatives are
arranged in matrix form to solve for the positions, velocities, and accelerations of the

various links of the mechanism.
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Figure {(6) A 2R Robot to Illustrate the Use of Path Constraints and Virtual Elements

[1].
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3.1.4 Displacement Analysis

The equations describing the constraints of a general mechanism are non-linear
algebraic equations. An iterative procedure is used to solve these equations for the
values of the varying coordinates. Newton-Raphson technique in solving non-linear
equations is applied. This technique requires the formation of a matrix containing
the partial derivatives of the residual equations with respect to each unknown
parameter. This matrix is called the Jacobian matrix [J ] Arrange the constraints
equations in the following order; closed-loop, time-dependent motion generators, and

spatial and length constraints. Then the Jacobian matrix becomes

(4 & __  __ &
ooy Opy é?M '
In dn __ __ 9
op,  Cp, [z
G Fu __ . Y
épy  Op, 2y
P Fu __ . Gu
cpy  Cp, Z W
Gy Gy __ __ Yy
ép,  Op, EQyy
G Fry __ . D
ép,  Cp, 2y

iy =| BL B __ . B
op,  p, 2%
CHgL @_L_ __ o égf_.
g, Cp, Py
By B __ &%,
oo o, Ziy
@ 8 )
oy op, Izl
D, D, L L b,
op,  Cp, 1z
By B __ B
| G, o, ops | (13)
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where ¢ is the number of closed-loops, # is the number of time- dependent motion
generators, w is the number of path and length constraints, and M is the number of
varying coordinates. To have a determinate system of equations, the following equation
must be satisfied

M=2q+h+w (14)

The elements of the Jacobian matrix are evaluated using an initial estimate for the
unknowns. Also, the residuals are evaluated using the same estimates. The corrected
values of the unknowns are found using the following iteration equations

[{Agt=-{F}® et
and
(B9 = {g}? + {20} (16)
where the vector {A@} is the correction vector, {F}? is the residuals evaluated at

the j-thiteration, {p}? is the unknown vector at the j-th iteration, and {7 is the

corrected unknown vector. At the initial iteration j=0. The iteration continues using
equation 15 and 16 until all the magnitudes of the elements of the correction vector
{A@} are less than an allowed tolerance.

In this iterative procedure the initial estimates of the varying coordinates
decides which geometric inversion the mechanism will follow in the analysis. Different
initial estimates must be used to analyze different geometric inversions. These

estimates are obtained by sketching the mechanism at the desired geometric inversion.

3.1.5 Velocity Analysis

The equations used for the velocity analysis are linear algebraic equations.

The resulting system of equations is

’ {O}qul 1

[J]MxM{é’}Mxl = {—%}hxl
{0,

The system of equations 17 is linear and can be solved by Gauss-Jordan

ad

(17)

elimination for the velocity vector { ¢} .
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3.1.6 Acceleration Analysis

The acceleration vector {qo} can be obtained by taking the total time derivatives

of both sides of equation 17. Thus, the acceleration vector is given by

( {O}qul ’

a ) d (&
[J].\,[x.u{qp}xl{xl +[/ ].-‘L{x.l-l{qo}.-\fxl = _E{E}M > (18)
| {0},

where the elements of [J ] are the total time derivatives of the elements of the Jacobian

Matrix. Rearrange equation 18 to obtain

r {O}2qx1

. d |cg . )
[J]MxM{qD}Mxl =1 _E{E}M "_[J]Mxnf{q’}Mxl (19)
{0},

The acceleration vector {{} can be solved for using equation 19 by Gauss-Jordan

-

. 4

elimination technique.
3.2 Inverse Dynamic Analysis [1]

In inverse dynamic analysis [6] the functional relationships between the motion of
the input and time are known. These relationships can be introduced in the constraints
equations under the time-dependent motion generators. Thus, the configuration at any
point on time is defined and the coordinates' positions, velocities, and accelerations are
known. After defining the coordinates of the mechanism, the line element model of the
mechanism is used to solve for the joint deflections and internal forces [7]. The

following sections present the details of the inverse dynamic analysis.

3.2.1 Line Element [1]

The line element used to model the links of the mechanism have constant cross-
sectional properties. The elements are connected by joints. Each joint experiences
three freedoms consisting of two linear freedoms and one rotational freedom.,
Figure (7) shows an element with its initial and terminal joints and their freedoms.
There are two types of freedoms, active freedoms and inactive freedoms. The active
freedoms describe the possible elastic displacements of the mechanism. The inactive

freedoms specify the motion restraints at the element end. Inertial and external loads
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Figure (7) The Parameters of a General Element [1].
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are applied in the direction of the active freedoms. The freedoms of each element are

given global numbers N}, N,,..., N, in the order shown in Figure (7). The coordinate

systems describing the initial and terminal joint freedoms can have any orientation
with respect to the fixed reference coordinate system.

The properties and orientation of the elements relates displacements in the direction
of the freedoms and the loads applied at the two ends of the element. This relation
is summarized in the following equation:

{Pe}, , =[Ke] Xel}, (20)
where {Pe} is the vector containing the six loads applied in the direction of the six

freedoms of the element, [Ke] is the element stiffness matrix, and { Xe } is the vector

containing the six displacements in the direction of the six freedoms. The stiffness

matrix [Ke] is the product of three matrices. Hence

T
[Ke]éx() = [A]6x3[S]3x3[A]3x6 ) (21)
where [A] is the element statics matrix and [S ] is the element internal stiffness matrix.
[A] and [S ] are defined as
i 0 1 0 ]
_cos(a~ 7)) sin(a - 7,) sm(aL— )
sin(anyy —Soa=r) zeosla=7)
(Al= : :
- ° na-z) -sin(a-7,)
—sin{a@—y,) =sin(a-y,
Cosla —
(a=7,) ( 7 ) ( 7 |
L cos(a—7, cos(a—y,
] sin(a - y,) A 7 |
(22)
and _ )
E4 4 0
L 4FE] 4EI
[S]3x3 =/ 0 7 I (23)
o 4B 4B
I L L
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where@ is the orientation of the element with respect to the reference frame, y; and 7,

are the orientations of the initial and terminal ends freedoms coordinate systems with
respect to the reference frame, L is the length of the element, A and I are the cross-
sectional area and area moment of inertia of the element, and E is modulus of
elasticity of the element material. For more detailed discussion of these element
matrices, examine reference [2].
3.2.2 The Global System

The stiffness matrices of all the line elements contained in the mechanism are
superimposed on each other through the global freedom numbers of each element
(Nl,Nz,...,Ns). Also the elements loading vectors and elements displacements
vector are superimposed on each other. This superimposition procedure produces the
following global system of equations:

{P}N},xl =[K]NP><NP {X}N,x: . (24)

where {P} is the global loading vector, [K] is the global stiffness matrix, and { X'}
is the global elastic displacement vector. The loading vector {P} is a known vector.
This is true because the loads of the individual elements are superimposed on each
other at their respective joints and at the same time all the joints are in equilibrium.
Therefore, the elements' loads cancel each other at their common joints and the

only remaining loads are those loads that are externally applied on the mechanism or

the inertial loads due to the motion of the mechanism. The global stiffness matrix is also

a known matrix since it is the sum of the known individual element stiffness matrices.

Equation 24 can be solved for {X} using Gauss-Jordan elimination.

3.2.3 Element Forces and Moments

After finding the global elastic displacements vector {X }, the element elastic
displacements {Xe} can be obtained. They are extracted from {X } by their global
freedom numbers. Knowing the individual element elastic displacement vector, the
elemental loads { Pe} canbe found using equation 20. Through these elemental forces
and moments, the joint reactions and the unknown driving forces and torques are

obtained.
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3.3 Static Analysis [1]

The static analysis considered in this program relates the applied loads, the nodal
deflections, and elemental internal forces and moments. This type of analysis is used for
structures where there are no inertial loads and the global stiffness matrix is constant.
The analysis is performed by generating the global stiffness matrix of the structure

using its line element model and the procedure outlined in Section 3.2.2. The global

loading vector {P} is defined by the loading condition of the structure. Equation 24

can be directly used to solve for the global deflection vector {X}. The element

internal forces and moments are solved for using the procedure explained in Section

3.2.3 and equation 20.

3.4 Forward Dynamic Analysis [1]

In forward dynamic analysis [6], the driving forces and torques are known, but the
motion they generate in unknown. To solve this problem, 2 coordinate integration
procedure is used . In the case of forward dynamic analysis there are two types of
coordinates, ordinary and primary coordinates. The solution starts with known initial
positions and velocities for the primary coordinates. The initial positions for the
ordinary coordinates are estimated and iteratively computed. Using the initial state of
the mechanism, the initial accelerations of the primary coordinates are computed. These
accelerations are then integrated through the time step of the analysis to find the new
positions and velocities of the coordinates at the beginning of the next time step. The
same procedure is repeated through the time steps until the time of the analysis expires.
The procedure through which the initial accelerations of the primary and ordinary
coordinates are obtained at the beginning of each time step is discussed in the following
steps:

Step 1: Express the accelerations of all the varying coordinates in

terms of the primary coordinates accelerations.

Consider equation 19 in Section 3.1.6 and suppose that there are my ordinary
coordinates and my primary coordinates. The number of available constraints

equations is only my and the number of coordinates is M =mg + mp . The size of the
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Jacobian matrix [J ] and its total time derivatives, matrix [J ] is mgxM. Numbering

the primary coordinates last and partitioning equation 19 into ordinary and primary

coordinates, one obtains

Do 0 '
d &g . . : .
A A e e e I AT LA A FA TR CA B
gopnu?x‘l 0 m,x1
- (25)
where [Ja],,, . contains the first my columns of the Jacobian matrix of the system

and corresponds to the ordinary coordinates, [J p] contains the last mp columns

m, xm,,

of the Jacobian matrix and corresponds to the primary coordinates, {'(bo}m .1
Q

{(po}m ,» arethe accelerations and velocities of the ordinary coordinates, {&bp} .
@ m},x

{qbp} e the accelerations and velocities  of the primary coordinates, and
mpx -

[Jo]m .. and [jp]maxmp are the total time derivatives of [J,] m, 204 [Jp]

p XM, m, X m, xm},
respectively. Rearranging equation 25 to express the acceleration of all the coordinates

in terms of the primary coordinates acceleration one obtains

EARNREA B G s CASNSEA

{6}, = " By, (9)

{O}mpxl [I]mpxmp
where
0
{Eo}mo)d = —%{%} - [Jp]{gop} - [Jo]{qbo} (27)
0

Step 2: Use the initial displacements and velocities of the varying

coordinates to_express the inertial loads of the mechanism in terms _of the

primary coordinates accelerations,

The accelerations of the links inertias are expressed by the coordinates’ positions,
velocities, and accelerations. The inertial loads of each link are expressed by two terms.

One term corresponds to the inertial loads that do not depend on the acceleration of the
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primary coordinates and the other term corresponds to the inertial loads which are
linear functions of the primary coordinates accelerations. Using the elastic freedoms
numbers as identifiers for the inertial loads, the inertial load vector is defined as
= ; 28
{PI}prl {Plx}NP,I +[Pfl]prmP {Qp}mpxl (28)
where {P,-l}N : corresponds to the inertias' accelerations derived from the first term
PX

of the right side of equation 26 and [P’]v corresponds to the inertias'
~dy me

accelerations derived from the coefficient matrix of the second term of the right side of
equation 26.

tep 3: Form e lobal loading vector {P} as a_ function of the

primary coordinate accelerations.
The global loading vector { P} is a combination of the inertial loads and the

externally applied loads. The external loads are expressed in known functions of
time and coordinates positions and velocities. Thu;, they are added to the first term of
the right side of equation 28 to define the global loading vector as

{P}N x1 {Bgl}N x1 [sz] pxm {qDP}m x1 (29)
where

Bl o= (Bl B, 60)
and {PL } Nt is the external loading vector.

Step_4: e e _plobal _stiffness matrix_  [K] to solve for the
displacement vector {X} as a function of the prim coordinate

acceleration

The global stiffness matrix [K] is defined by the elastic elements properties

and the positions of the varying coordinates. Therefore, it is defined at the beginning
of each time step. Using equation 24, the global elastic displacement vector { X } is

computed as

{X}prl = [K]:Vl_,pr {Pgl}prl +[K]_-Nlprp[P ]v “m, {¢’p} NED)

or

X}prl ={ 1}N x1 [ 32]N xem, {¢P}

(32)

mpxl
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where

Waly o = (KT o Pl (33)

and

[XgZ]prﬁJp = [K];'lpx‘\r {})[,,} (34)

Step 5: For the elements where the driving forces and__torques are
applied, find the elemental load vector {Pe} as a function of primary

coordinates accelerations.

N xmp

For any element, the load vector {Pe} is defined by equation 20. The element
stiffness matrix [Ke] is already defined and the elastic displacement vector {Xe} can
be extracted from the global elastic displacement vector {X } Thus, the vector {Xe}
is given as

{Xeks, = {Xel}sxl +[Xe2]6xmp{ab}’}mpxl (35)
where {Xel} and [ Xe, ] correspond to {Xg,} and [ Xg,] respectively. Now, using

equation 20 the elemental load vector { Pe} is computed as

{Pe}le = [Ke]Gxé{Xel}ﬁxl +[Ke]6x6[XeZ]6xmp {ép}mpxl (36)

Step 6: FEquate the elemental load components which are expressed in
terms_of_the primary coordinates accelerations to the comresponding driving
forces and torques.

The Known driving forces and torques are applied in the direction of the elemental
freedoms. Therefore, they are considered as elemental loads. By writing equation 36
for the elements associated with these driving forces and torques and extracting the

equations that correspond to the freedoms where these loads are applied, one obtains

{Pa' m,x1 {Pd, +[ dz]m xm, {QDP}
where {Pd}

G7)

myx]

is the known driving forces and torques vector, {Pd } is the
mpxl 1 mpxl

known elements' loads extracted from the first term in equation 36, and [sz]

mpxmp

is the coefficient matrix extracted from the second term in equation 36. The only

unknown in equation 37 is the primary coordinates acceleration vector.
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Step 7:_Solve for the primary coordinates acceleration vector.

Rearrange equation 37 as

(2], 16,}

where

{P‘;}mﬁl = {Bi}mel - {Pdl} (39)

mpxl

-{r} (38)

m, x1 mpxl

The primary coordinates acceleration vector can be directly solved for using equation
38 by Gauss-Jordan elimination technique.
tep 8: Substitute for the valu f the prim coordinate
accelerations to__find the accelerations of the ordinary coordinates, the
global loading vector, the global elastic displacements vector, and the

elemental loading vectors.
Equations 26, 29, 32, and 36 express, respectively, the accelerations of varying

coordinates, the global loading vector, the global -elastic displacements vector, and

the elemental loading vectors in terms of the primary coordinates accelerations

vector. Substitute for the computed value {'qbp} in these equations to completely

define the state of the mechanism at the beginning of the time step.
The initial positions and velocities of the varying coordinates at the beginning of

the n-th time step are approximated as

n n— + 3 (n— 1 ey (n—
(01 =0} + (g™ + (a0 ()™ )

and
(Y7 ={a}" + At (41

These approximations are sufficient if the time step Af corresponds to small

displacements of the mechanism's coordinates.
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3,5 Static Equilibrium Position Analysis
In static equilibrium position analysis, the static configuration of a system of rigid

bodies, subjected to a set of constraints and acted upon by static loads, is unknown.
This problem is solved based on the principle of virtual work and using an iterative
procedure. In this type of analysis, like the inverse dynﬁmic analysis, there are two types
of coordinates, ordinary and primary coordinates. The solution starts with an initial
guess for the positions coordinates.
3.5.1 Derivation of the Static Equilibrium Equations :

* The derivation is based on the principle of virtual work. This princible was stated

by Bernoulli for a system in static equilibrium [8]. First we consider a single particle

whose position is given by RP; (@) and subjected to a force P, , and let r, () bethe
component of the vector ﬁp‘ (§) in the direction of the applied load P, . If the particle

is given a virtual displacement &%, in the direction of £, , after noting that P =0for

static equilibrium, the virtual work is
Wy, = F,-0r, =0

but

n o,
_ Ps
Oy, = 2.0,

. i=l i

therefore the virtual work done by P, is
n G,

W, =B, 6, = BY. 24,
' i=]

i

for a mechanical system of 2 points of load application, the total virtual work done is

h h n é}fp
LW, =22 —63,=0 (42)
5=1 s=1 =1 i
by rearranging and collecting terms, equation (42) can be written as
>.C(g)3g, =0 i=1,2,.,n
i=1
or :
{c}Y {87} =0 (43)
where

7 = number of coordinates
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g ={91-92>+9n)
These are the varying coordinates that describe the systems equilibrium
configuration, These coordinates are related through the systems constraints.
C{q) is the load component associated with the virtual displacement &g,.
It is desired to express equation (42) in terms of independent virtual

displacements as

oW = _ile(q.)&]dj =0
j= ,

or
{DY {&g,}=0 (44)
where
m = number of independent coordinates
qa, arethe independent coordinates.
The number of constraints equations is given by
k=n-m

The equilibrium configuration is given by the following set of equations

D;(7)=0 j=1,2,...,m

and . (45)
H(@=0 1=12,..k

where f;(7) =0 are the constraints equations.

So far we have (m+ k = n) equations with (1) unknowns, but to calculate Dj (cj)
we have to find the load components C,(7) and then transform C,(7) to D; (7).
The load components C,(@) can be found by looking at equations (42) and {43) and can

be given by

h n é’r
C=2P>2 L

s=1 j=1 k
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3.5.1.2 Transforming {C} to {D} :

Considering holonomic constraints, the constraints equations can be written as
£(@=0 1=12,...k

The variation of the constraint equation is always zero, then

§i=3 =0

or
[J]kxn{aq}nxl = {O}kxl (47) .
where [J ] ixn 18 the Jacobian matrix and its elements are given by
5, =9 =12,k and i=12,..n
;i

Partitioning the [J ] matrix in equaﬁon (47) as
{64,},
J J odkxl | _ 0 48
[[ a]kxk [ d]kxm]{{c%]d}mﬂ { } -‘ (48)

where g, are the independent coordinates to be used in equation (44), {, are the

remaining coordinates.
By manipulating equation (48) , we can have

{&9} =[B]. {64} (49)

where

(5] _[—[Jo];lk [thm}

nxm [I]mxm .

Equation (49) expresses all the variations in terms of the independent variations.
So, we can write, using equations (43) and (49)
{cY {a}={cY [Bl&}=0
but, from equation (44)
{D}T{@d} =0
then, we conclude that
{D}' ={cy'(]
or  {D}=[B)'{C} (50)

and this equation provides the required transformation.
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3.5.2 The numerical solution procedure :
Step 1 : Assume initial guess values for all the coordinates
{q.} i=12,..n
Step 2 : Find the exact values of the dependent coordinates {qo} corresponding

to the assumed values of the independent coordinates {qﬁ}
Step 3 : Find the [B] and {C} matrices, and calculate the resulting {Do}vector

from equation (50).
Step 4 : Numerically differentiate ), with respect to g, using 6-th order

differentiation formula

D »— (D, ~9D, +45D, ~45D,, +9D,, - D,,)
&, 60qu 3 2 1 1 2 3
where D,-3 =D,-(qj +3Aq]-) ,

D, =Df(‘]f+2AG’j),

D, =Di(qj+qu)’

D, = Df(qj_qu) ,

D, = Df(qj "2qu) ,
and D, =D)(g;-38q;)

then find

[Jd]{@]

Gq J

Step 5 : Then solve the expression

[Z){ag.} =-{p°}
for {Ag,} , (these values when added to {g,} should force the {D} vector to

converge to {0}.

Step 6 : Increment the vector {qd} by the values {Aqd} obtained in step 5.
ie let {qd}={q3}+{Aqd} and repeat steps 2,3,4,5 and 6 until convergence is

obtained.
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CHAPTER IV
INPUT DATA PREPARATION AND
PROGRAM STRUCTURE
This program is capable of performing dynamic and static analysis of general
planar mechanisms. For the program to perform the analysis, the mechanism must
be modeled and transferred into numerical data and mathematical expressions, which
the program can interpret and analyze. This has to be done by the user of the
program. After the input datais ready, the user can execute the program and input the

data directly.

4.1 The Input Data
To prepare the input data, the user must develop a complete model for the
mechanism. This should be done by following the necessary steps discussed in Chapter
II. As an example consider the six-bar mechanism shown in Figure (8). The input data
can be defined directly from the model. It consists of the following items:
4.1.1 The Characteristic Data
The characteristic data provides general information about the mechanism. It
consists of the following items which are defined by their name as it appears in the
computer program:
1) nel = number of elements
2) nl = number of independent closed loops
3) nco = number of varying coordinates ( M)
4) nj = number of joints
5) dt = time increment
6) tt = total time of the analysis
7) kd = indicate which analysis is needed, kd=0 for kinematic analysis, kd=1 for
dynamic analysis, kd=2 for static analysis, kd=3 for static equilibrium
position analysis.

8) ntf = number of elastic freedoms (N p)

9) gr = local acceleration of gravity
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Figure (8) A Six-bar Mechanism to Illustrate the Preparation of The Input Data [1].

All links are made of
steel with A = 1 in?,
| = 0.11 in*, and

= 30x10° psi.
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10) el = modulus of elasticity
11) nvm = number of variable messes
12) npc = number of primary coordinates
These items can be entered through the data editor in the DAMES program. For the
mechanism shown on Figure (8), these items are
14,2, 5,13, .05, 2., 1, 30, 386, 30000000, 0, O
where the time increment is .05 second and the total time of the analysis is 2.0 seconds.

4.1.2 The Element Data

The element data describe each element in the mechanism. The units in which

these information are provided must be consistent. The length and the orientations of
the element and its freedom coordinate systems are defined by two parameters. The
first parameter is the constant component and the second parameter is the number of
the varying coordinate representing the varying component. The following items give
the name of the parameters in the program and its definition.

1) ne = the element number

2) cl(ne) = constant component of length

3) ivl(ne) = variable component coordinate number of length

4) alc(ne) = constant component of element orientation

5) ialv(ne) = variable component coordinate number of orientation

6) nij(ne) = the number of the initial joint

7) ntj(ne) = the number of the terminal joint

8) np(ne,j) (j=1,..,6) = the global freedom numbers in the order (Nl,Nz,...,N6)

as shown on Figure (7).
9) gic(ne) = the constant component of the orientation of the initial joint

freedoms coordinate system

10) igiv(ne) = variable component coordinate number
11) gte(ne)} = the constant component of the orientation of the terminal joint
freedoms coordinate system

12) igtv(ne) = variable component coordinate number
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13) ar(ne) = the cross-sectional area
14) ami(ne) = the cross-sectional area moment of inertia
The element data for element 1 in Figure (8) is 1,1.,0,0.,1,1,2,31,31,1,2,3,0.,0,0.,0,1.,0.1
For element 11
11,3.,0,0,1,1,2,31,31,31,1,2,3,0,,0,0,,0,1.,0.1
and for element 13
13,0.,5,30,0,13,11,0,0,0,0,0,0,0.,0,0.,0,0.,0.
4,1.3 Closed Loop Data
The closed loop data is an important part in describing the topology of the
mechanism. It consists of the following items for each loop.
1) In = loop number
2) nle(ln) = number of elements in the loop
3) Ipe(lnj)  (5=1,..,nle(ln)) = elements numbers in the loop when it is traced in
the clockwise direction.
For the mechanism shown on Figure (8) the input data for loop 11is
1,7,1,2,3,4,-6,-5,-7
and for loop 2 is
2,9,1,2,8,9,10,11,-13,-14,-12
4.1.4 Joint Data

The joint data describe the path connecting a joint to the origin of the base frame

and the inertias lumped at the joint. It is arranged in the following order for each joint.
1) jn = joint number
2) npe(jn) = number elements in the path
3) mpe(jn,j) (j=1,..,npe(in)) = elements numbers included in the path
4) xma(jn) = the mass lumped at the joint
5) xmoi(jn) = the mass moment of inertia
Consider joint 1 in the example mechanism of Figure (8), its data is given by
1,0,0.,0.

where there are no elements in the path of joint 1.
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The data for joint 10 is
10,5,1,2,8,9,10,.0003,.00015
For joint 6 the joint data is
6,2,7,5,.0002,.0001
4.1.5 Variable Mass Data
The variable mass data is only considered if conditions like those discussed in step 8
of the modeling technique are present. The variable mass data includes the following
items.
1) rnm;(i) = the joint number at which the variable mass is lumped.
2)iml(i) = the element number at one side of the variable mass.
3) im2(i) = the element number at the other .Sidt.& of the variable mass.
4) den(i) = the linear density of the link material.
To illustrate the input data for variable masses, consider
the mechanism shown on Figure (3). There are two variable masses, one at joint 3 and
the other at joint 5. The data for the first one is
3,2,3,r
where r is the linear density of the moving slider path.
4.1.6 The primary Coordinates Data
This set of data is considered when inverse dynamic analysis is performed. It
consists of the following items for each primary coordinate.
1) k= the nuﬁber of the primary coordinate being considered.
2) ti(k) = its initial position.
3) tiv(k) = its initial velocity.
4) npf(i) = the global freedom number associated with the primary coordinate.
5) nede(i) = number of elements associated with the primary coordinate.
6) nedec(i,j) (5=1,..,nedc(i)) = the elements' numbers in item #5.
To clarify each item in the primary coordinates data, consider the mechanism

shown in Figure (9). The known torque T drives the mechanism. The primary

coordinate is numbered last and it is @5 . The global freedom numbers associated with it
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Figure (9) A Slider-Crank Mechanism Driven With Known Torque at O, [1].
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is 10 and the torque is applied in its positive direction. There are two elements
associated with freedom 10. They are elements 1 and 4. Thus, the data for this primary

coordinate ts
3) ¢3o » @30 » 1032) 114

where ?s, and 9'030 are the initial position and velocity of the primary coordinate @ .

4.1.7 Initial Condition-Estimate-Data

To start the iteration in the displacement analysis, initial estimates of the coordinates
must be provided. These estimates do not have to be accurate, but close to the correct
value. They may be obtained by a sketch of the mechanism. This data set consists of
the estimates of the initial positions of the mechanism coordinates excluding the
primary coordinates. For the mechanism shown in Figure (8), there are 5 coordinates

(no primary coordinates) and their data set is
P, P2, P, 1P, +Ps,

where @, is the initial estimate of ¢, .

4.2 Data Input for the Constraints, Loads and‘ Driving Forces and Torques

There are three parts of mathematical expressions the user must supply. The first
includes the user constraints, which arein equation form describing the time-
dependent motion generators and spatial and length constraints. The second defines
the externally applied loads on the mechanism. The Last one defines the known forces
and torques which drive the mechanism. The user can input the expressions into the
program directly, since the program has a text editor. The program can interpret the
mathematical expressions directly without any need for re-compilation, since an
equation parser has been developed and implemented into the program. Of course
during the development of this parser, acertain syntax and general rules have been
defined. The general format for the user constraints, the user loads and the driving
forces sections is shown below. (Note: the input data is shown in italic
characters)

#uscons

input the expressions for the user constraints here
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return
#end
#usload
input the expressions for the user loads here
return
#end
#drive
input the expressions for the driving forces and torques here
return
#end
the variable names used in the mathematical expressions are described in the following
sections. But for now, here are the rules for the data input
1- If the user want the program to ignore a line, he can use a semicolon to define
the line as a comment.
Example:
#uscons
; this is a comment
2- The user cannot use variable names other than those listed in the following
sections.
3- If you want to assign a value to a variable, type the variable nameona
new line, follow it by an equal sign =, then input the value or expression.
Example:
#uscons
nte=1

nsc=2

4- The user must not input more than one statement in a single line.
Example:

#uscons
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nsc=1 ntc=2 X thisis wrong

5- To access an item in an array-type variable name, use the variable name followed
by the array index enclosed in round brackets, and if the array is two dimensional, use
the variable name followed by the two index numbers separated by a comma and
enclosed in round brackets.

Example:

Huscons

nic=1

nsc=2
te(1)=110.-5*tm-ti(1)
pre(1,2)=-1.0

6- The user can use a goto statement. It must be followed by an integer specifying a
label, which program execution can move to. The label must exist and should be
followed by a colon.

Example:

goto 20

20:

7- The user can use the if{...) conditional statement in the following manner (the
else statement is optional)
if(condition)
expressionl

expression2

else

expressionl
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expression2

endif

the following conditional operators can be used

Operator ____ Meaning

= equal

> greater than

< less than

>= greater than or equal
<= less than or equal
<> not equal

& and :
| or

Example:

if(nst=2)

goto 10

endif

10:

44

8- The following operators can be used in the expressions, they are ordered

according to their priority in execution from the highest to the lowest.

Operator Meaning

O Open & Close brackets
*/ Multiply and divide

+ - Plus and Minus

9- The following mathematical functions can be used (Note:

trigonometric functions are in radians).

Angles used in
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Function Meaning

cos(x) cosine of X

sin(x) sine of x

tan(x) sin{x)/cos(x)

acos(x) the inverse cosine of x
asin(x) the inverse sine of x
atan(x) the inverse of tan x

power(x,y) returns e (2.718281828) to the power x

log(x) returns the natural logarithm of x to the base e
sqr{x) returns X to the power 2 (x?)
sqrt(x) returns the square root of x (‘\/; )

4.2.1 The User Constraints

The functions that relate the coordinates with time and with each other and the
derivative of these functions are supplied in "#uscons” section. The user only supplies
the equations in the format described previously. For time-dependent motion
generators, the variable names used and their corresponding mathematical expressions
are

te(i) = 8i

preli) = %

pttc(i)= %

dpr(i,j) = -C-i— ;g
dpttc(i) = 7%

The variable names for the coordinates positions, velocities, accelerations and time are
as follows

@, =t (1)

@; = tiv(i)

@, =tia (i)
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time = i
To illustrate the use of these names, suppose the input crank of the mechanism
shown in Figure (8) is driven with the following function

1 2
nt)=90, +oxtm+—axim

The residual equation is

1 2
81(?’1):(01,, +coxtm+5x axtm’ — @,

Then
tc(l)=g = ¢ +oxtm+0.5xax tm* - ti(1)

where @, , @, and & are known constraints. The partial derivatives of g, are as

follows:

and the total time derivatives are
dptc(1,1)=0
dpttc(l) = a
For the spatial and length constraints, the variable names are

sc(i) =S,

a;
psdi, j)=——+
Ip;
d &5,
dpscli, j) = =L
pscli, ) =— 2,

Consider the 2R robot shown in Figure (6), the residual form of the constraints
equation is

-1

(1i(3) - JCO)2 . (i(4)- yo)2
a’ b’

where X, , ¥, ,a ,and b are known constraints. The partial derivatives are:

Sc(1) = 31(693,(94) =

psc(1,3)= % =2.0xb* x (ti(3)-x,)

(!
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and

psc(1,4) = By 2.0xa*x(ti(4)-y,)
ap,

The total time derivatives are:

dpsc(1,3) =2.0 xb* x 1iv(3)
and
dpsc(1,4) = 2.0 x a* x tiv(4)

The user also must specify the number of existing constraints equations for
each type. For the time—d_ependent constraints the variable name for the number of
equations is AfC. Similarly the variable name for the spatial constraints equations is
nsc. These numberé are

ntc=1
and
nsc=1
for the two examples discussed earlier. The following is a copy of "#uscons” section

and the location of the user supplied expressions.

#uscons
nte=1 <« Number of time dependent constraints
nsc=1 <- Number of spatial constraints
if(nst=2)
goto 10
endif
tc(1)=6.2832*sin(.3927*tm)+ 1.5708-ti(3)
pre(l,3)=-1 <« @I—‘-

oy
ptic(1)=2.4674*cos(.3927*tm) «— —&;—L
sc(h)=-tit4) < S{o,)
psc(l,4)=-1. « 2,

2

goto 20
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10:

. d(,
dptte(1)=-.9689*sin(.3927*tm e — —E
ptic(l) sin( 3927*m) dt( &j

20:
return
#end

4.2.2 The User Loads

In dynamic analysis, the forces and moments are expressed as a function of time or
coordinates positions and velocities. To permit the use of general expressions for
those externally applied loads, the user can specify the loads by mathematical
expressions. The external forces and moments can be applied in the direction of any
active elastic freedom. They are identified by the numbers of these elastic
freedoms. The section containing the expressioﬁs of the externally applied loads is

called "#usload” . The variable name for the applied load is

usi(i)

where i is the freedom number in which direction the load is applied. Suppose that

there is a torque 7" applied at O, in the mechanism shown on Figure (8). Let 7" actina

counter clockwise direction and be given by

T=10.0+5x(p;- @, )

To introduce this torque in the program, the following statement must be supplied in

"

section:

usi(13) ==10.0-5x {#i(3) - o, )

the "usloa

where @, is the known initial value of @;. The signs are reversed because the

torque is applied in the opposite direction of the rotational freedom 18. Also, in the
mechanism shown in Figure (8), consider the spring and damper forces at the
slider. To introduce these forces, the following statements must appear in the "usload”

section
usl(30) = k x (ti(S) ~ s, ) + ¢ x tiv(5)
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where K and ¢ are known constants and @s, is the initial value of @5 when the spring

is not stretched or compressed. The "usload” section and the location of the user
supplied expressions can be listed as:
#usload
usl(13)=-10.-53.*(ti(3)-2.)
usl(30)=3.*(ti(5)-1.5) + 0.5*tiv(3)
return
#end
4.2.3 The Known Driving Forces and Torques
In the inverse dynamic a_nalysis, the mechanism is driven by known forces and

torques. The section "#drive” identifies these driving forces and torques. These can be
functions of time or a combination of time and coordinates' positions and velocities.
The variable names for these functions is fpc(i) . The index i (i = 1,2,...,mp)
corresponds to the order by which the input data for a given driving load is supplied.
Suppose that the mechanism shown in Figure (9) is driven by the known torque T,
and 7 is defined by

T=100.0+30x (@, - @3 )
This driving torque is introduced in the program by the following statement which
must be supplied in this section "#drive”

foc(1)=100.0- 30 (i(3) - 5 )

where @3 is a known constant. The section "#drive” is shown in the following listing

where the location of the user supplied statements is indicated
#drive

Fpe(1)=100.-30*(ti(3)-2.0)

refurn

#end

4.3 Program Structure

The DAMES program for the Dynamic Analysis of MEchanical Systems is based

on the theory discussed in Chapter IIl. The input to the program was discussed and
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illustrated in Section 4.2. The flow of the program is shown in Figures (10.A), (10.B)
and (10.C). The program is divided into subroutines, and each subroutine is explained in
the flow-chart. The program is written in "C" language, and is developed under the
most popular Graphical User Interface environment on a PC computer "Microsoft
Windows". The program is too large to be listed in this thesis, it takes more than 200
pages, so only part of it islisted and supplied in appendix C. The listing shows the
part of the program that relates to the analysis, file handling, and the main functions.
The output of the program is stored in 6 data files. The contents of each are given in the
fonov}ing: | ’ ’
a. Files 1,2, and 3 contain the positions, velocities, and accelerations of all the
coordinates respectively.
b. File 4 contains the x and y components of the positions, velocities, and
accelerations of all the joints. -
c. File 5 contains the elastic displacement vector {Xg}.
d. File 6 contains the element forces vector {Pe} for all the elastic elements of
the mechanism. If static analysis is performed, the results are stored in this file in
table form.
The file names for the above are given as
FNAME.BK#
where
FNAME stands for the project name, as the user specifies it when saving the data,
# stands for the file number as listed above.
For example if the user saved the input data to 2 project name ROBOT, then the
file names for the output will be in consecutive order
ROBOT.BK!I, ROBOT.BK2, ROBOT.BK3, ROBOT.BK4, ROBOI.BK5 AND
ROBOT.BK6 . The information in these files are listed at each time step along with
the corresponding time, and in case of static equilibrium position analysis, the time is
replaced by the iteration number and only the data for the coordinates and joint

positions are saved.
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Figure (10.A) The Flow Chart of the Computer Program.
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Figure (10.C) The Flow Chart of the Computer Program (Continued).
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The main window in the program has a tool bar which contains seven buttons as
shown in Figure (11.A), the first is to open a previously saved project, the second is to
save the current data, the third is to activate the numerical data input editor as
shown in Figure (11.B), the fourth button is to activate the input data editor for user
supplied constraints, loads, and driving forces and torques, the fifth button is to begin
the analysis, the sixth button is to activate the presentation of the results where new
buttons appear on the right side of the screen as shown in Figure (11.C), the user

can have a plot of coordinates' positions vs. time, coordinates' velocities vs. time,

coordinates' accelerations vs. time, elements internal forces, external joints deflections,

joints' x-positions and y-positions vs. time, and the path of each joint. The user can
have a printout of any chart or table displayed, by pressing the "PRINT" button. The
seventh button on the tool bar activates the animated simulation of the mechanism

movements as shown in Figure (11.D).
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20:
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Figure (11.A) The Main Window of the DAMES Program.
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Figure (11.B) The Numerical Data Input Editor of the DAMES Program.
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Figure (11.C) The Results Presentation Window of the DAMES Program.
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Figure (11.D) The Simulation Window of the DAMES Program.
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CHAPTER V

ILLUSTRATIVE EXAMPLES

In this chapter several examples are solved. Those examples cover various areas in

the analysis of mechanical systems. Some examples are solved for the purpose of
verifying that the results obtained by this program are correct, while other examples
are solved for the purpose of illustration. The first three examples are forward dynamic
analysis of different mechanisms. The first example is a simple pendulum. This example
is solved in three ways, once with free oscillation, second with half critical
damping and third with critical_damping. The results of this example are verified by
comparing them with the analytical solution. The second exampleisa double
pendulum. In the third example the dynamic response of an automobile moving on
a sinusoidal road is determined. The results of this example are compared with the
results obtained by the DYMAC program [4]. The fourth and fifth examples are inverse
dynamic analysis, where a disk cam with radial flat-faced follower and 2 3-R robot
with mixed-loop configuration are considered. The fourth example is compared with
the analytical solution. The 6th, 7th, and 8th examples are on static equilibrium
position analysis. The 6th example is solved manually for the purpose of comparison.
The 7th example is a 3-R robot. And the 8th example is to determine the static
configuration of the lumbar region of the human spine, subjected to certain loading

conditions. The following is a detailed discussion for each example and its results.
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Example 1
A Simple Pendulum
In this example the oscillation of a simple pendulum is analyzed using the
DAMES program and compared to the exact solution for the purpose of checking the
program. This example is solved in three different ways, once with free oscillations,
second with half critical damping and third with critical damping. The finite element
model for the pendulum is shown in Figure (12). The data for the pendulum are as
follows:
Mass lumped at joint (2) =1 Kg
Length of the hanging cord = 1 meter
The initial angle the cord forms with the vertical = 10°
There is one primary coordinate associated with the pendulum. The coordinate is

@, . The primary freedom related to the primary coordinate is freedom 4. The load

generated by this primary coordinate is
foe()=Cxp =Cx ()

where C is the damping coefficient.

The input data for this example is shown in Appendix A.

This example is solved in three ways:

1. The pendulum with free oscillations:

The exact solution for the period of one oscillation is

z‘=-2£ 2r i =-2—k 277.'1’—1— =2.010158 seconds
i3 g T 9.81

where k =1.574 for a 10° angle [9).
and the result obtained by the DAMES program is 2.01 seconds ascanbe seenin

Figure (13) for a complete cycle.
Taking into account that the time increment for the analysis was 0.005 second, the
obtained result is a good approximate of the exact solution.

2) The pendulum with half critical damped oscillations:

For a simple pendulum, the critical damping coefficient is
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C,= 2@ = 6.264184

and the circular frequency with damping is

2z (CY
1 T C,

where 7 is the period of small oscillation without damping

and for £ =05
C

c
g = 2.70695 rad/sec, and the period of oscillation is

r= 2_7: =2.32113 seconds

q
and the result obtained by the DAMES program is 2.32 seconds as can be seen in Figure

(14) for a complete cycle, which remains within a good approximation of the solution.

(3) The pendulum with critically damped oscillations:

For a simple pendulum, the critical damping coefﬁciént is

C. = 2\/% = 6.264184

and the circular frequency with damping is

2
2z C
g=—41-| =
T C,
where 7 is the period of small oscillation without damping, and for ol =10
[+

q = 0.0 rad/sec, and the period of oscillation is

2
T= L —> infinity, or there will be no oscillations.
q

and looking at Figure (15) obtained by DAMES program, we can sce that there are no
oscillations, and the result is compatible with the solution.
A simulation of the pendulum can be seen using the DAMES

program.
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Figure (12) A Simple Pendulum.



63

Time vs. position for Coordinate 1
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Figure (13) The Time History of the Coordinate ¢ without Damping.
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Figure (14) The Time History of the Coordinate ¢, with Half-Critical Damping.
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Figure (15) The Time History of the Coordinate ¢, with Critical Damping.
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Example 2
A Double Pendulum

In this example, forward dynamic analysis is performed for the system shown in
Figure (16). The system is composed of a simple pendulum with another pendulum
suspended on its free end. The system is solved for with free oscillations and the
positions, velocities and accelerations of the two coordinates are found. The finite
element model for the system is shown in Figure (16). The data for the system are as
follows:

Mass lumped at joint (2) =1 Kg
Length of the element 1 = 1 meter
Mass lumped at joint (3) =1 Kg
Length of the element 2 = 1 meter

The initial angle that element 1 forms with the vertical = 10°

The angle that element 2 forms with the vertical = 15° |

The system has two primary coordinates associated with it. They are
coordinates @, and @,. The primary freedom associated with the first primary
coordinate is freedom 8, and it is freedom 7 for the other primary coordinate. Since
we have free oscillations, i.e. no damping, we set the primary forces to zero. And the
loads generated by those primary coordinates will be:

_ﬁac(l) =0
Jpe(2)=0
The input data for this example is shown in Appendix A.
The natural frequency of the system for this normal mode vibration is given by the

equation [10]

W= ?(2—\5)

=2.3972 rad/sec
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and the period of small oscillations is
2

a
=2.621 sec.
and the result obtained by the DAMES program is 2.65 seconds as can be seenin

T

Figures (17)&(18) for a complete cycle.

Taking into account that the time increment for the analysis was 0.005 second, the

obtained result is a good approximate of the exact solution.
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Figure (16) The Double Pendulum.
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Time vs. position for Coordinate 1
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Figure (17) The Time History of the Coordinate @;.
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Time vs. position for <Coordinate 2
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Figure (18) The Time History of the Coordinate ¢,.
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Example 3
Automobile on a Rough Road [1]

In this example 2 two dimensional model of a car is used to simulate its motion
over a sinusoidal road. Figure (19.A) shows the relation of the car to the model and
Figure (19.B) shows the finite element model. The two wheel axles through points A
and E move parallel to the road profile. The axes of the two springs are always normal
to the line BD which is fixed to the car chassis. The mass and mass moment of
inertia of the car are lumped at point C. The following data is used to define the
parameters of the prc-)blem. ‘ 7

m . =647.67 Ib (car mass)
I, =12000 Ib-in?

K, =K, =132,500 Ib/in

@5, =@7, =20in

BC =CD =54in

C1 =C2 =1,000 Ib-sec/in

The car is moving with a constant speed ¢, = 550 in/sec. At time t=0 the front
wheels are at the beginning of the curve y=f(x).

There are 3 time dependent constraints. The value of @, is defined by the car
speed and the initial position. Let the origin of the x-y coordinate system be at the

beginning of the curve y=f{x). The following constraint equations can be written for

?1
g(1)=550x¢t-108-¢, =0,

Py ,
@=550

3 :
L O N
dt p, ’
da0n_,

dr &
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The values of ¢, and @5 are determined by the road profile and the value of ¢). In
case of @, ,the constraint equations are divided into two parts. First, when ¢, <0,

@, is constant and equal to zero. Therefore the constraint equations are

g2)=0-9,=00,
&0 __,

o, ,
22)_

a
i@(2)=00 and
dt dp, -
d&D)
ar a

when @, > 0, the constraint equation for ¢, are
g(2)=6x(1-cos(cp,))- @, =0.0,

&) =6xcxX sin(cqol) ,
o0,
&(2) _ 1
op, ’
&2 _,,
a Py
%%;?) =6x C2 X q'Dl COS(CQ)I) »
A&Q2)_ 00
dat dp,
d&)_
dt a '

The constraint equations for @5 are obtained as

g(3)=6x (l—cos(cx (o1 + ¢4)))— ps=0.0,

6€(3) =6xcxsin(cx{p, + ¢’4)) ’
oD

&(3) =6xcx sin(c>< (@, + 994)) ,
op,

&0)__
1z ,
&(3)

———=0.0,
a
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4 2(3) = 6% x (@, +@,)cos(c x (@ + 0,)) »

dt op,

d 0%(3) =6xc x (@, + @, ) cos(c x (@, + @,)) ,and
dat cp,

dt Sos

These constraints equations are supplied in the #uscons section of the input
data. A listing of the input data is given in Appendix B.

There are two primary coordinates associated with the two suspension springs
and dampers. These coordinates are -996 and @. The primary freédoms felated to
these primary coordinates are freedoms 7 and 8. These freedoms are in the directions
of the axes of the two springs. The loads generated by these two primary
coordinates are

fre(1)=325% (20— @)~ 10 x ¢,
and

fre(2)=325%(20~ ;) —10x ¢,
These loads represent the spring and damping forces. They are supplied in the
direction of freedoms 7 and 8 respectively. These primary forces are supplied in the
#drive section of the input data given in Appendix B. The results of the dynamic
response analysis of the car is given in Figures (20)-(24). Figure (20) shows the path
of joint 5 in the XY plane. The time history of coordinates 6 and 7 are given in
Figures (21) and (22). The forces produced by the springs and dampers at points B and
D are shown in Figures (23) and (24). Figure (25) shows the path of joint 5 as given
by the computer program DYMAC [4]. Comparing this Figure with Figure (20), it is

clear that the two solutions are identical.
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Figure (19.B) The Finite Element Model of the Car [1].
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X-position vs. Y-position for Joint No. 5
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Figure (20) The Path of Joint 5 in the XY Plane.
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Time vs. position for Coordinate 6
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Figure (21) The Time History of the Coordinate .
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.Time wvs. position for Cocordinate .7
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Figure (22) The Time History of the Coordinate ¢-.
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Time vs. Internal Force # 3 of Element # 8
4,0E+05

2.7E+05

1.4E+05

1.0E+04

~-1.2E+05

I
]
. ]
-2.5E+05 ! ! !
0.0E+00 4.0E-01 8.0E-01 1.2E+00 1.6E+00 2.0E+00

Time

Figure (24) The Time History of the Axial Force of Element No.8.
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Example 4
Disk Cam with Radial Flat-Faced Follower

Figure (26.A) shows a disk cam with radial flat-faced follower. The cam
rotates with constant angular velocity. The contact point between the cam and
follower is at x,y, which is a distance / from the radial center line of the follower.
The displacement of the follower from the origin is given by the following equation:

R=C+f(0

Where the minimum radius of the cam is represented by C, and f (9 represents the
desired motion of the follower as a function of the angular displacement of the cam.

For this example, the flat-faced follower is driven through a total displacement of

14
38.1 mm. At the start ofthe cycle (zero displacement), the follower dwells for 5 rad.
. . .. T
It then moves 38.1 mm with cycloidal motion in 5 rad. The follower dwells for —
' 1
rad and returns 38.1 mm with cycloidal motion in 5 rad. A sketch of the displacement

diagram is shown in Figure (27) [11]. The desired motion of the follower is expressed as
a function of the angular displacement of the cam, and is given in the following

equations [11]

f(8,_,=9,
76.2 Ty 76.2 .
f(0), 5 =7(9—-2-J—Esm(49—2:r)
(6, =381
76.2x 6 762

f(O),.p=152.4- sin(46- 67)
T

The finite element model of the system is shown in Figure (26.B). The following
data is used to define the parameters of the problem.
C =32 mm (minimum radius of the cam)
m =1 Kg (the mass lumped at joint 2)
k =5 N/m (the spring constant)
time for complete cycle of the cam = 1 sec

initial length of element 1 =0.032
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initial length of element 2 =0.108
total length of elements 1 & 2 = 140 mm
The system has two time dependent constraints. One for the length of element 1
and the other for the length of element 2. These constraints equations are as follows

for the time 0 <tm <0.25 sec, the first constraint is for coordinate @ and is given

by
tc(1)=0.032 - ¢, = 0.032 -#i(1) =0 ,

for the time 0.25 < tm < 0.5 sec, the first constraint equation is

te(l) = 0.0762 x (2 X tm X z—?) - 0'2762 x sin(8 x fmx T=2x 7)—ti(1) +0.032
7 i1

for the time 0.5 <fm <0.75 sec, the first constraint equation is
tc(1) = 0.0381—+i(1) + 0.032

for the time 0.75 < fm < 1.0 sec, the first constraint equation is

2xtmx x—ﬁ)

1c{1)=0.0381x 1.0—( +2isin(8xtmx 7—-6x ) {—ti(1) +0.032
7

Iy

2
The other constraint is for coordinate 2, and is given as follows
tc(2) = 0.140 - ¢ = @, =0140-1i(1)~£i(2) =0

The spring force is introduced in the #usload section of the input data as an external
load, and is given by
usl(1) = 5.0 x (¢, — 0.108)
A listing of the input data for this example is given in Appendix A and Appendix B.
The results for time history for coordinate 1, is given in Figure (28). By
comparing this Figure (28) with Figure (27), taking into consideration the minimum
radius of the cam, it is clear that those figures are identical. Figure (29) shows the

force generated by the spring and the inertia of the mass.
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Figure (26.A) The Disk Cam with Radial Flat-Faced Follower. [11]
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Figure (26.B) The Finite Element Model of the Disk Cam with the Follower.
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Figure (27) Sketch of the Displacement Diagram. [11]
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Figure (28) The Time History of the Coordinate ¢.
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Time vs. Internal Force # 5 of Element #1
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Figure (29) The Time History of the Axial Force of Element No.1.
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Example 5
A 3-R Mixed-Loop Planar Robot [1]

Figure (30) shows a 3-R  mixed-loop planar robot. The end effector at joint 7
must trace the circular path shown with the defined displacement function S. The
orientation of element 6 mustremain constant at anangle @ = 0. There are three
input actuators, one at joint 1 which defines the orientation of element 1 and the
other two are at the double joint 3 and they define the orientations of elements 3 and 7.
The inertias of the rest of the elements are neglected. A load of 40 Ibm is lumped at
joint 7 for the end effector assembly. The combined mass and mass moment of inertia
of the two actuators at joint 3 are 60 Ibm and 2.8 Ibgin.sec? .

For the dimensions and the inertias shown on Figure (30), we need to find the
positions, velocities, accelerations, and input torques for the three actuators.

The input data for this example is taken directly from Figure (30). It is listed in
Appendix A. There are no applied loads or known driving forces or torques. There

are two constraints equations. One time-dependent equation for ¢@; defining the

orientation of element 9 using the function 8. This constraint equation is

te(1) = gl@s.t) ____S_f_)__ @;=0

The other equation is path constraint and it defines the
orientation of the end effector. It is given by
ts(1) = S(0,) = s, — ¢4 =0

Finally, the derivatives of these two constraints equations are

te(1,3) =~ =1,
pie(1,3) 2o,
prtc(l)=g=l§(_{l’
ad rﬁg
d = ————
ptc(1,3) i o, 0,
da 1d ()
dotte(l) = —=2 = ————
prc(1) da rd a '’
pt5(1=4) =—=-1 s
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4

The results of the dynamic analysis are shown on Figures (31)-(38). The time
history of the position for ¢, and @4 are shown on Figures (31)-(32). The time
history of their velocities are shown on Figures (33)-(34), and their
accelerations are shown on Figures (35)-(36). The time history of the driving torques

for two actuators are shown on Figures (37)-(38).
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Figure (30) A 3R Mixed-Loop Robot. [1]
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Figure (31) The Time History of the Coordinate @;.
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Figure (32) The Time History of the Coordinate ¢.
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Time vs. Velocity for Coordinate 6
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Figure (34) The Time History of the Velocity of gps(é)ﬁ).
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Figure (35) The Time History of the Acceleration of ¢, (9"1)
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Figure (36) The Time History of the Acceleration of QDG('gbs).
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Internal Force # 1 of Element # 1

Time vs. Internal Force # 1 of Element # 1
5.5E+02
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Time

Figure (37) The Time History of the Driving Torque T.
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Internal Force # 1 of Element # 7
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Figure (38) The Time History of the Driving Torque T3.

97

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



98

Example 6
A Slider Crank Mechanism
In this example we are to find the static equilibrium configuration of the slider

crank mechanism shown in Figure (39) under the action of gravity.

Manual Solution:

Step(1): Find the virtual work expression

(a) - Find the position vector
- For joint 2 -

R

_a
iy = Ecosqpl

a .
Ry2 = Esm ¢l
- Forjoint 3

b
R, =acosg + ECOS @,

. b .
R, =asmng, +Esm¢2

- For joint 4
R, =05
R, = 0
(b) - Find the variation of the position vector in the direction of the
applied load.
- For joint 2
éR, = %é‘qol cos @,
~For joint 3
&R, =adp cos, + —bz- O, COSP,

- For joint 4
IR, = 9,
(c) - Write the virtual work expression for each joint

- For joint 2

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



a
Sy =mgoR,, = [mlggcos %]5401

- For joint 3

, b
Ouy = mgOR, = (nga cos @1)5491 + (”128‘2‘005 (92]5@2

- For joint 4
Sy = k(%o - ‘?’3)54"3
where @3 is the value of @ at which the spring is unloaded.

" - if there is 2 moment M at joint 1 we add

ou, = Moo,
(d) - Define the C coefficients in Equation 1

a
G = mlgacosml +m,gacos e,

b
C, =mg=cosp,

G= k(%a - ?’3)
Step(2): Write the constraints Equations:

(a) One closed loop gives 2 equations for the x and y directions
fi=acos@, +bcosp, —p; =0

fi=asing, +bsing, =0

(b) Write the Jacobian of the constraints equations

9

20, =-asing, =J;,
I~ psing, = Jy
p,

‘@‘=‘1=J13

s

—Qfg-—acosqo, =J5

22

erl——bcosg}:v2 =Jy
2,

ﬁ=0=-]23
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then

S0, b=
bcosp, O 72

|:—a sin @,
0,

—bsin @, —l:l o0, g
acos
cos @ 0

and

—-asin g,
J )=
[4] [acosgvI

-1
Jai=
BEN
Step(3): Write the equilibrium conﬁg;;rafion expression

The B matrix is

[T [JZ]]
[B][ 1

- 1 bcosg,
JT'=
[ 1] absin(q:v2 — qol){—a cos ¢,

[Jl]-l[J2]=

—bsin @,
bcosp,

bsingp,
asin g,

1 bcosg,
absin(qa2 — gpl) —~acos@,

then
C cosp, |
asm(%"‘?’l)
, —COSQ,
B]=|—
[] bsm(%“(pl)
1

Finally, we write the expression

[B]T{C} ={0} ,or

a
(m1g‘2'+nga]cos¢‘1 )"'m2g§c°5¢72 bsin(

asin(% — @ 0= A

which can be reduced to

mg m§g |cosy Cosy,
- + -, )k=0
( 2 2 ) Sin((f’z = (01) (%a %) :

cos@, b coOSQy

100

(-]

)+(¢73 “@3)]‘:0
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using this equation with the two constraints equations, we can solve for the

equilibrium configuration of the mechanical system.

This problem was modeled and solved by the DAMES program. There is one
primary coordinate associated with a spring.  This coordinate is ¢; . The primary
freedom related to this primary coordinate is freedom 13. This freedom is in the
direction of the axis of the spring. The load generated by this primary coordinate is

Joe(l) = k(%o - @3)
where K is the spring constant, and @3 is the value of @5 when the spring is relaxed.

This force is introduced to the program in the #dfrive section of the input data, and it is

listed in Appendix B.
The input data is listed in Appendix A, with the following values for m,, m,, k,and g

my =0.510528 Kg, m = 0.510528 Kg,
k=114 N/m, g=9.81 m/sec?

and the solution was

@,=0.510528 rad , @, =5.95137 rad, @5 =41.2320m
by substituting these values in the equilibrium configuration equations developed

above, we can see that they are satisfied.
A plot of the mechanism at the initial puess configuration and the static

equilibrium configuration was obtained by the DAMES program and is shown in

Figures (40.A) and (40.B).
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Figure (39) The Finite Element Model of the Slider Crank Mechanism.
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Figure (40.A) The Mechanism Configuration at the Initial Guess.

Figure (40.B) The Static Equilibrium Configuration of the Mechanism.
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Example 7
A 3R Robot under Gravity Effect

In this example, the robot shown on Figure (41), is allowed to fall under the action
of gravity. The following values were given for the masses at the joints,
my=0.01, m, =0.001, m =0.001, m, =0.001

The input data for this example is taken directly from Figure(41). It is listed in
Appendix A. A plot of the robot at the initial configuration and the static
equilibrium configuration of the mechanism is shown in Figures (42.A) and (42.B) as
obtained by the DAMES program.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



103

1so0e@ SISyl JO BIusD - Ueplor Jo AlSIBAIUN JO AkeiqiT - paARSaY SIYDIY |1V

Figure (41) A 3R Robot Under Gravity Effect.
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Figure (42.A) The Mechanism Configuration at the Initial Guess.



0.1552

Figure (42.B) The Static Equilibrium Configuration of the Mechanism.
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Example 8
An Application to the Human Spine

In this example, the lumbar region of the human spine is modeled in the sagittal
plane (vertical section in the direction from back to face). The lumbar region con;ists of
the bottom five vertebrae of the spine. The facet joint, where contact occurs between
two vertebrae on the back side, is modeled by a slider moving on an inclined straight
path. The two dimensional model is shown in Figure (43). The dimensions of the model
were taken from a real spine model [1]. The spine was subjected to two sets of loading
conditions. These set-s are gi\-ren in table 5.1. The elastic properties of the bonés are not
well defined. For this reason, the modulus of elasticity and the cross-sectional
properties of the elements were given as unity and the magnitudes of the elastic
deflections are neglected. The system has five primary coordinates. The primary
forces associated with the primary coordinates are considered as spring forces, each
with a spring constant k. Because of the lack of information about this subject, a value
is assumed for the spring constant.

The input data for this example is taken directly from Figure (43). Itis listed in
Appendix A.  The primary forces are introduced in the #drive section of the input
data, and it is listed in Appendix B. The configuration of the spine at the initial
guess is shown in Figure (44). The static equilibrium configuration of the mechanism
is shown in Figures (45.A) and (45.B) for both loading sets as obtained by the
DAMES program.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Table 5.1

The Loading Sets of the Spine

SET No.1 SET No.2
Freedom No. Load Freedom No. Load
36 10N 35 S Nm
37 SN
39 10N
40 -7N

109
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Figure (43) The Finite Element Model of the Lumbar Region of the Human Spine. [1]
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Figure (44) The configuration of the Spine at the Initial Guess.
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Figure (45.A) The Static Equilibrium Configuration of the Spine for Loading Set No.1.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



113

Figure (45.B) The Static Equilibrium Configuration of the Spine for Loading Set No.2.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

A generalized computer program for dynamic and static analysis of planar
mechanisms was developed and presented in this thesis. This computer program is an
extension to a previous work done by Dr. Mohammad Dado [1]. This programisa
result of the application of theories in four important areas in mechanical design:

1. Theories of kinematic anélysis of pl_anar mechanisms,

2. Theories of static and dynamic analysis.

3. Finite element utilization in kineto-elasto-static analysis.

4. Theories of numerical analysis for solving linear and nonlinear
simultaneous equations.

This program performs four types of analysis:

1. Kinematic analysis, where the positions, velocities and accelerations of
the links and any point on the mechanism are determined.
2. Static analysis of structures, where the deflections at the joints and the
element internal forces and moments are determined.
3. Two types of dynamic analysis are performed:
a. Forward dynamic analysis, where the driving forces and torques are
known functions of time and/or coordinates positions and velocities.
b.  Inverse dynamic analysis, where the driving forces and torques are
unknown but the motion they generate is known.
4. Static equilibrium position analysis, where the static equilibrium configuration
of a mechanism is determined for a given loading condition.

This program features a general modeling technique for planar mechanisms, which
is capable of accommodating arbitrary constraints and motion generators.

The program provides the results in plotted or tabulated forms. It also provides

a simulation of the motion of the mechanism.
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During the development of this program, several examples where solved, either
for the purpose of checking the program or for the purpose of illustration.

This program represents a significant design tool for the mechanism designers.
They can perform dynamic and static analysis of their designed mechanisms while
they are in the design stage. Thus, reducing the time and cost needed to
complete their design.

Recommendations:

An important extension of the work presented here is to include analysis of three-
dimensional mechanical systems, which would increase the capability and significance
of the computer program. Using such a program, a large class of problems can be
analyzed in the area of robotics, spatial rhechanisrns, and dynamics of 3-D
suspension systems. This extension involves the development ofa3-D finite line
element. And it would be expected to increase the time to enter the data describing
a given mechanism. Hence, the development of automatic data generation-schemes
are highly recommended. The development of such a program will be a very important
addition to the limited number of programs available in the area of three-dimensional

analysis.
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Appendix A
The Listing of the Input Model Data

for the Eighf Examples



MODEL DATA FOR EXAMPLE 1: A SIMPLE PENDULUM.

The characteristic data.
number of elements = 1
number of loops = 0
number of lagrangian coordinates= 1
number of joints = 2
time increment = 0.0050
total time for analysis = 2.5000
analysis index = 1
total number of freedoms = 3
gravity value = 9.8100
modulus of elasticity = 207000000,000000
number of variable masses = 0

number of primary coordinates 1

The elements data. Each line with the following order:
element#,length,variable coord#,orientation, variable coord#,
initial joint#,terminal joint#, global freedom nos.(N1..N6)
orientation of initial joint freedoms,variable coord#,
orientation of terminal joint freedoms,variable coord#,
cross-sectional area,corss-sectional area moment of inertia

1 1.0000000e+00 0 0.0000000e+00 1 1 2 4 5 51 2 3
0.0000000e+00 0 0.0000000e+00 0 1.0000000e+00 1.0000000e+00

Loops data. Each line with following order:
loop #, no. of elements in the loop,

elements numbers in the loop when traced in the CW direction
number of loops = 0 —> no loop data

The joints data. Each line with the following order.
joint#,mass lumped at the joint,mass moment of inertia,# of clements in the path
elements numbers included in the path
1 0.000000e+00 0.000000¢+00 0O
2 1.000000e+00 0.000000s+00 1 1

The variable length data. Each line with the following order:
joint# at which the var. mass is lumped,element# at one side,
element# at the other side,linear density of the link material
number of var. masses = 0 -> no data

The primary coordinates data. Each line with the following order:
primary coord#, initial position, initial velocity, global freedom# asscciated
with the primary coord., number of elements associated with the primary coord.
the elements’ numbers.

1 -1.400000e+00 0.000000e+00 4 1 1

Initial conditions for the lagrangian ¢oordinates:
(ti(k) : lagrangian coordinate number k)
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MODEL DATA FOR EXAMPLE 2: A DOUELE PENDULUM.,

The characteristic data.

number of elements = 2
number of loops = 0
number of lagrangian coordinates= 2
number of joints 3

time increment = 0.0050
total time for analysis = 3.0000
analysis index = 1

total number of freedoms = 6
gravity value = 9.8000
modulus of elasticity = 1.000000
number of variable masses = 0
number of primary coordinates = 2

The elements data. Each line with the following order:
element#, length,variable coord#,orientation, variable coord#,
initial joint#,terminal joint# global freedom nos.(N1..N6)
orientation of initial joint freedoms,variable coord#,
orientation of terminal joint freedoms,variable coord#,
cross-sectional area,corss-sectional area moment of inertia

1 1.0000000e+00 0 0.0000000e+00 1 1 2 8§ 9 91 2 3
0.0000000¢+00 0 0.0000000e+00 0 1.0000000e+00 1.0000000e+00

2 1.0000000e+00 0 0.0000000e+00 2 2 3 7 2 3 4 5 6
0.0000000e-+00 0 0.0000000e+00 0 1.0000000¢+00 1.0000000e+00

Loops data. Each line with following order;
loop #, no, of elements in the loop,

elements numbers in the lIoop when traced in the CW direction
number of loops = 0 ---> no loop data

The joints data. Each line with the following order:
joint#,mass lumped at the joint,mass moment of inertia,# of elements in the path
elements numbers included in the path
1 0.000000e+00 0.000000e+00 0
2 1.000000e+00 0.000000e+00 1 1
3 1.000000e+00 0.000000e+00 2 I 2

The variable length data. Each line with the foltowing order:
joint# at which the var. mass is lumped,element# at one side,
element# at the other side,linear density of the link material
number of var. masses = 0 -> no data

The primary coordinates data. Each line with the following order:
primary coord#, initial position, initial velocity, global freedom# associated
with the primary coord., number of elements associated with the primary coord.
the elements' numbers.

1 -1.000000e+00 0.000000¢+00 8 1 1

2 -3.000000e-01 0.000000e+00 7 1 2

Initial conditions for the lagrangian coordinates:
(tick) : lagrangian coordinate number k)
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MODEL DATA FOR EXAMPLE 3: AUTOMOBILE ON A ROUGH ROAD.

The characteristic data.

number of elements

number of loops

number of lagrangian coordinates

number of joints
time tncrement

total time for analysis

analysis index

total number of freedoms

gravity value

modulus of elasticity
number of variable masses
number of primary coordinates

The elements data. Each line with the following order:
element#,length, variable coord#,orientation,variable coord#,
initial joint# terminal joint#, global freedom nos.(N1..N6)

ot omn onn

0~ == OO

0.0050
2.0000

1

11
386.0000
1.000000
0

2

orientation of initial joint freedoms,variable coord#,

orientation of terminal joint freedoms,variable coord#,
cross-sectional area, corss-sectional area moment of inertia

1

2

0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
0,0000000e+00
0.0000000e+00
5.4000000e+01
0.0000000e+030
5.4000000e+01
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00

1 0.0000000e+00 0 1 2 0 0 0 0 0 O

0 0.0000000e+00 0 0.0000000e+00 0.0000000e+00
2 9.0000000e+01 0 2 3 0 0 0 0 0 O

0 0.0000000e+00 0 0.0000000e+00 0.0000000e+00
6 9.0000000e+01 3 3 4 11212 2 3 7

0 0.0000000¢+00 3 1.0000000¢+00 1.0000000e+00
0 0.0000000e+00 3 4 5 2 3 7 91011

3 0.0000000¢+00 0 1.0000000e+00 1.0000000¢+00
0 0.0000000e+00 3 5 6 91011 5 6 8

0 0.0000000e+00 3 1.0000000e+00 1.0000000e+00
4 0.0000000e+00 0 2 7 0 0 0 0 0 O

0 0.0000000e+00 0O 0.0000000e+00 0.0000000e+00
5 9.0000000e+01 0 7 8§ 0 0 0 0 0 O

0 0.0000000e+00 0 0.0000000e+00 0.0000000¢+00
7 9.0000000¢+01 3 8 6 41212 5 6 8

0 0.0000000e+00 3 1.0000000e+00 1.0000000e+00

Loops data. Each line with following order:
loop #, no. of elements in the loop,

elements numbers in the loop when traced in the CW direction

1 7 23 4 5-8.7 -

The joints data. Each line with the following order:
joint#,mass lumped at the joint,mass moment of inertia,# of elements in the path

¢lements numbers included in the path

OO =3 Gy Lh o b e

0.000000e+00
0.000000¢+00
0.000000e+00
0.000000e+00
6.476700¢+02
0.000000e+00
0.000000¢+00
0.000000e+00

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
1.200000e+04
0.000000e+00
0.000000¢+00
0.000000e+00

0

11

212
3123
4123
4 16 17
216
3167

o9
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MODEL DATA FOR EXAMPLE 3 (Continued)

The variable length data. Each line with the following order:
joint# at which the var. mass is lumped,element# at one side,
element# at the other side,linear density of the link material
number of var, masses =0 -> no data

The primary coordinates data. Each line with the following order:
primary coord#, initial position, initial velocity, global freedom# associated

with the primary coord., number of elements associated with the primary coord.

the elements' numbers.
6 1.615380e+01 0.000000e+00 7 1 4
7 1.615380e+01 0.000000e+00 8 1 5

Initial conditions for the lagrangian coordinates:
(ti(k) : lagrangian coordinate number k)

ti(1)= -1.080000e+02 B :

ti(2)= 0.000000e+00

ti(3)= 0.000000e+00

tid)= 1.080000e+02

ti(5)= 0.000000e+00
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MODEL DATA FOR EXAMPLE 4: DISK CAM WITH RADIAL FLAT-FACED FOLLOWER

The characteristic data.
number of elements = 2
number of loops = 0
number of lagrangian coordinates= 2
number of joints = 3
time increment = 0.0050
total time for analysis = 1.0000
analysis index = 1
total number of freedoms = 1
gravity value = 98100
modulus of elasticity = 207000000.000000
number of variable masses = 0
number of primary coordinates = 0

The elements data, Each line with the following order:
element# length,variable coord#,orientation,variable coord#,
initial joint#,terminal joint#,global freedom nos.(N1..N6)
orientation of initial joint freedoms,variable coord#,
orientation of terminal joint freedoms,variable coord#,
cross-sectional area,corss-sectional area moment of inertia

1 0.0000000e+00 1 0.0000000e+00 0 1 2 2 2 2 2 1 2
0.0000000e+00 0 0.0000000e+00 0 9.9999998¢-03 9.9999998¢-03

2 0.0000000e+00 2 0.0000000e+00 0 2 3 2 1 2 2 2 2
0.0000000e+00 0 0.0000000e+00 0 9.9999998¢-03 9.9999998¢-03

Loops data. Each line with following order:
loop #, no. of elements in the loop,

elements numbetrs in the loop when traced in the CW direction
number of loops = 0 -—> no loop data

The joints data. Each line with the following order:
joint# mass lumped at the joint,mass moment of inertia,# of elements in the path
elements numbers included in the path
1 0.000000e+00 0.000000e+00 O
2 1.000000e+00 0.000000e+00 1 1
3 0.000000e+00 0.000000e+00 2 1 2

The variable length data. Each line with the following order:
joint# at which the var. mass is lumped,element# at one side,
clement# at the other side,linear density of the link material
number of var. masses =0 -> no data

The primary coordinates data. Each line with the following order:

primary coord#, initial position, initial velocity, global freedom# associated
with the primary coord., number of elements associated with the primary coord.
the elements’ numbers.

no. of primary coordinates = 0 ---> no data

Initial conditions for the lagrangian coordinates:
(ti(k) : lagrangian coordinate number k)

ti(1)= 3.200000¢-02

ti(2)= 1.080000e-01
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MODEL DATA FOR EXAMPLE 5: A 3-R MIXED-LOOP PLANAR ROBOT

The characteristic data.

number of elements = 9
number of loops = 2
number of lagrangian coordinates= 6
number of joints = 8

time increment = 0,0500
total time for analysis = 4.0000
analysis index = 1

total number of freedoms = 21
gravity value = 386.0000
modulus of elasticity = 30000000.000000
number of variable masses = 0
number of primary coordinates = 0

The elements data. Each line with the following order:
element#,length, variable coord#,orientation,variable coord#,
initial joint#,terminal joint#,global freedom nos.(N1..N6)
orientation of initial joint freedoms,variable coord#,
orientation of terminal joint freedoms,variable coord#,
cross-sectional area,corss-sectional area moment of inertia

1 9.0000000e+00 0 0.0000000¢+00 1 1 2222222 1 2 3

2

0.0000000e+00
9.0000000e+00
0.0000000e+00
2.4000000e+01
0.0060000e+00
3.4000000¢+01
0.0000600e+00
2.4000000¢+01
0.0000000e+00
2.4000000e+01
0.0000000e+00
3.6000000e+01
0.0000000e+00
4.8000000e+01
0.0000000e+00
1.2000000e+01
0.0000000e+00

0 0.0000000¢+00 0 7.5000000e-01 1.4060000e-01
0 0.0000000e+00 1 2 31 2 3 4 56

0 0.0000000e+00 0 7.5000000e-01 1.4060000e-01
0 0.0000000e+00 2 3 4 4 5 6 7 8 9

0 0.0000000¢+00 0 3.1999999e-01 2.1299999¢-02
0 0.0000000e+00 5 4 510 8 9 11 12 13

0 0.0000000e+00 0 3.1999999%-01 2.129999%¢-02
0 0.0000000e+00 4 5 6 14 12 13 15 16 17

0 0.0000000e+00 ¢ 7.5000000¢-01 1.4060000e-01
0 0.0000000¢+00 4 6 7 15 16 17 19 20 21

0 0.0000000e+00 0 7.5000000¢-01 1.4060000e-01
0 0.0000000e+00 6 3 6 4 5 618 16 17

0 0.0000000e+00 0 3.1999999%¢-01 2.129999%e-02
0 4.5000000e+01 01 8 0 0 0 0 0 0

0 0.0000000e+00 0 0.0000000e+00 0.0000000e+00
0 0,0000000e+00 3 8 7 0 0 0 0 0 O

¢ 0.0000000e+00 0 0.0000000¢+00 0.0000000e+00

Loops data. Each line with following order:
Ioop #, no. of elements in the loop,

clements numbers in the loop when traced in the CW direction
6 1 2 7 6 9 -8

1

2 43 45

-7

The joints data. Each line with the following order:

joint#,mass lumped at the joint,mass moment of inertia,# of ¢clements in the path

elements numbers included in the path

h da W) B e

0.000000e+00

0.000000e+00 0

9.800000e-03 2.640000e-01 1 1

1.552000e-01 2.800000e+00 2 1

0.000000e+00
0.000000e+00

0.000000e+00 3

2
123
0.000000e+00 4 1 2 3 4
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MODEL DATA FOR EXAMPLE 5 (Continued)

6 0.000000e+00 0.000000e+00 5 1 2
7 1.036000e-01 0.000000e+00 4 2

45
! 6
8 0.000000e+00 0.000000e+00 1 8

3
7

The variable length data, Each line with the following order:
joint# at which the var. mass is lumped, element# at one side,
clement# at the other side,linear density of the link material
number of var. masses = 0 -> no data

The primary coordinates data. Each line with the following order:
primary coord#, initial position, initial velocity, global freedom# associated
with the primary coord., number of elements associated with the primary coord.

7 the elements' numbers.
no. of primary coordinates = 0 ---> no data

Initial conditions for the lagrangian coordinates:
(ti(k) : lagrangian coordinate number k)

(1= 2.095000e+00

ti(2)= 3.141600e+00

ti(3= 1.570800e+00

ti(dy= 0.000000+00

ti(5)= 1.047200e+00

ti(6)= 1.047200e+00
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MODEL DATA FOR EXAMPLE 6: A SLIDER CRANK MECHANISM

The characteristic data.

number of elements = 5
number of loops = 1
mumber of lagrangian coordinates= 3
number of joints = 5

time increment = (.0000
total time for analysis = 0.0000
analysis index = 3

total number of freedoms = 12
gravity value = 938100
modulus of elasticity = 207000000.000000
number of variable masses = 0

number of primary coordinates 1
The ¢lements data. Each line with the following order:
element# length,variable coord#,orientation,variable coord#,
initial joint#,terminal joint# global freedom nos.(N1..N6)
orientation of initial joint freedoms,variable coord#,
orientation of terminal joint freedoms,variable coord#,
cross-sectional area,corss-sectional area moment of inertia
1 9.0000000e+00 0 0.0000000e+00 1 1 2131313 1 2 3
0.0000000e¢+00 0 0.0000000e+00 0 9.9999998e-03 9.9999998¢-03
2 9.0000000¢+00 0 0.0000000e+00 1 2 3 1 2 3 4 5 6
0.0000000e+00 O 0.0000000¢+00 0 9.9999998e-03 9.9999998¢-03
3 L3500000e+01 0 0.0000000e+00 2 3 4 7 5 6 8 910
0.0000000e+00 0 0.0000000e+00 0 9.9999998¢-03 9.9999998e-03
4 1.3500000¢+01 0 0.0000000e+00 2 4 5 8 9 10 11 12 13
0.0000000e+00 0 0.0000000e+00 0 9.9999998e-03 9.9999998¢-03
5 0.0000000e+00 3 0.0000000e+00 0 I 50 0 0 0 0 O
0.0000000¢+00 0 0.0000000e+00 0 0.0000000¢+00 0.0000000e+00

Loops data. Each line with following order:
loop #, no. of elements in the loop,
elements numbers in the loop when traced in the CW direction
1 512 3 45

The joints data. Each line with the following order:
Jjoint#,mass lumped at the joint,mass moment of inertia,# of elements in the path
elements numbers included in the path

0.000000e+00  0.000000e+00
5.000000e+00 3.000000e+01
0.000000e+00 0.000000e+00
6.000000e+00  4.500000e+031
0.000000e+00 0.000000e+00

Lh $a L) B =
— B e O
[ S 3 S ]
W

LA e et it

The variable length data, Each line with the following order:
joint# at which the var. mass is lumped element# at one side,
element?# at the other side,linear density of the link material
number of var. masses =0 -> no data

The primary coordinates data. Each line with the following order:
primary coord#, initial position, initial velocity, global freedom# associated
with the primary coord., number of elements associated with the primary coord,
the elements' numbers.

3 3.653970e+01 0.000000e+00 12 1 4
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MODEL DATA FOR EXAMPLE 6 (Continued)

Initial conditions for the lagrangian coordinates:
(ti(k) : lagrangian coordinate number k)

ti(1)= 7.854000e-01

ti(2)= 5.794500e+00
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MODEL DATA FOR EXAMPLE 7: A 3R ROBOT UNDER GRAVITY EFFECT

The characteristic data.

number of clements = 7
number of loops = 1
number of lagrangian coordinates= §
number of joints = 7

time increment = 0.0500
total time for analysis = 4.0000
analysis index = 3

total number of freedoms = 22
gravity value = 386.0000
modulus of elasticity = 30000000.000000
number of variable masses = 0

number of primary coordinates 3

The elements data. Each line with the following order:
clement# length,variable coord#,orientation, variable coord#,
initial joint# terminal joint# global freedom nos.(N1..N6)
orientation of initial joint freedoms,variable coord#,
orientation of terminal joint freedoms,variable coord#,
cross-sectional area,corss-sectional area moment of inertia

1 9.0000000e+00 O 0.0000000¢+00
0.0000000e+00 0 0.0000000¢+00
2 9.0000000e+00 0 0.0000000e+00
0.0000000e+00 0 0.0000000¢+00
3 2.4000000¢+01 © 0.0000000e+00
0.0000000e+00 0 0,0000000e+00
4 2.4000000e+01 0 0.0000000e+00
0.0000000e+00 0 0.0000000e+00
5 2.4000000e+01 0 0.0000000e+00
0.0000000e+00 0 0.0000000e+00
6 2.4000000e+01 0 0.0000000e+00
0.0000000e+00 O 0.0000000e+00
7 3.6000000e+01 0 0.0000000e+00

312222323123

0 7.5000000¢-01 1.4060000e-01
32312345%6

0 7.5000000e-01 1.4060000¢-01
4 34456789

0 3.1999999%¢-01 2.1299999¢-02
1 4510 8 91112 13

0 3.1999999¢-01 2.1299999e-02
2561412131516 17
0 7.5000000e-01 1.4060000e-01
2 6 7151617 19 20 21
0 7.5000000¢-01 1.4060000e-01
53645¢6181617

0.0000000¢+00 0 0.0000000e+00 0 3.1999999¢-01 2.129999%¢-02

Loops data. Each line with following order:
loop #, no. of elements in the loop,
elements numbers in the loop when traced in the CW direction
1 4 3 4 5 7

The joints data. Each line with the following order:

Jjoint#,mass lumped at the joint,mass moment of inertia,# of elements in the path
elements numbers included in the path
1 0.000000e+00 0.000000e+00 0
9.800000e-03 2.640000e0! 1 1
1.552000e-01 2.800000¢+00 2 1
0.000000e+00 0.000000eH)0 3
0.000000e+00 0.000000e+00 4
0.000000e+00 0.000000e+00 5
1.036000e-01 0.000000e+00 4 1

SO W
(SN
Mo

The variable length data, Each line with the following order:
joint# at which the var. mass is lumped,element# at one side
element# at the other side,linear density of the link material
number of var. masses = 0 -> no data
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MODEL DATA FOR EXAMPLE 7 (Continued)

The primary coordinates data. Each line with the following order:
primary coord#, initial position, initial velocity, global freedom# associated

with the primary coord., number of elements associated with the primary coord.

the elements' numbers.

3 4.512400e+00 0.000000e+00 0 2 1
4  35.017400e+00 0.000000e+00 4 1 3
5 3.464600e+00 0.000000e+00 4 1 7

2

Initial conditions for the lagrangian coordinates:
(tigk) : lagrangian coordinate number k)

ti(ly= 3.517400e+00

ti2= 2.617400e+00
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MODEL DATA FOR EXAMPLE 8: AN APPLICATION TO THE HUMAN SPINE

The characteristic data.
number of elements = 3l
nurmber of loops = 5
number of lagrangian coordinates= 135
number of joints = 27
time increment = L0000
total time for analysis = 50.0000
analysis index = 3
total number of freedoms = 90
gravity value = 386.0000
modulus of elasticity = 30000000.000000
number of variable masses = 0
number of primary coordinates = 5

The elements data. Each line with the following order:
clement# length,variable coord#,orientation,variable coord#,
initial joint¥ terminal joint#,global freedom nos.(N1..N6)
orientation of initial joint freedoms,variable coord#,
orientation of terminal joint freedoms,variable coord#,
cross-sectional area,corss-sectional area moment of inertia

1 1.2000000e+00 0 9.0000000e+01 1 2 4 2 190 3 4 5
1.9194401e+01 0 0.0000000e+00 1 1.0000000¢+00 1.0000000e+00
2 0.0000000e+00 7 0.0000000¢+00 1 4 5 3 4 5 8 610
0.0000000e+00 1 0.0000000e+00 1 1.0000000e+00 1.0000000¢+00
3 2.0000000e+00 -7 0.0000000e+00 1 5 6 8 6 10 50 51 52
0.0000000e+00 1 0.0000000e+00 1 1.0000000e+00 1.0000000e+00
4 0.0000000e+00 14 -6.0000000e+01 1 6 7 50 51 52 86 83 &7
0.0000000e+00 1 -6.0000000e+01 1 1.0000000e+00 1.0000000¢+00
5 9.5999998¢-01 -14 -6.0000000e+01 1 7 8 86 83 87 65 66 67
-6.0000000e+01 1 -6.0000000¢+01 1 1.0000000e+00 1.0000000e+00
6 9.4999999¢-02 0-1.5000000¢+02 1 8 9 65 66 67 89 88 90
-6.0000000e+01 1 -3.0000000e+01 0 1.0000000e+00 1.0000000¢+00
7 1.1000000e+00 0 9.0000000e+01 2 5 10 9 7 10 11 12 13
0.0000000¢+00 1 0.0000000e+00 2 1.0000000e+00 1.0000000¢+00
8 0.0000000e+00 8 0.0000000e+00 2 10 11 11 12 13 16 14 18
0.0000000¢+00 2 0.0000000¢+0C 2 1.0000000e+00¢ 1.0000000e+00
9 2.0000000e+00 -8 0.0000000e+00 2 11 12 16 14 18 47 48 49
0.0000000e+00 2 0.0000000e+00 2 1.0000000e+00 1.0000000¢+00
10 0.0000000e+00 13 2.9700500e+02 2 12 13 47 48 49 80 78 82
0.0000000e+00 2 2.9700500e+02 2 1,0000000e+00 1.0000000¢+00
11 1.2000000e+00 -13 2.9700500e+02 2 13 14 80 78 82 62 63 64
2.9700500e+02 2 2.9700500¢+02 2 1.0000000¢+00 1.0000000e+00
12 4.1000000e-01 0 2.0700500e+02 2 14 7 62 63 64 85 84 87
2.9700500¢+02 2 -6.0000000e+01 1 1.0000000e+00 1.0000000e+00
13 1.1000000e+00 0 9.0000000e+01 3 11 15 17 15 18 19 20 21
0.0000000e+00 2 0.0000000e+00 3 1.0000000¢+00 1.0000000e+00
14 0.0000000e+00 9 (.0000000e+00 3 15 16 19 20 21 24 22 26
0.0000000e+00 3 0.0000000e+00 3 1.0000000e+00 1.0000000¢+00
15 1.8000000e+00 -9 0.0000000¢+00 3 16 17 24 22 26 44 45 46
0.0000000e+00 3 0.0000000e+00 3 1.0000000e+00 1.0000000e+00
16 0.0000000e+00 12 2.9500000e+02 3 17 18 44 45 46 76 73 77
0.0000000¢+00 3 2.9500000e+02 3 1.0000000e+00 1.0000000e+00
17 1.2000000e+00 -12 2.9500000¢+02 3 18 19 76 73 77 59 60 61
2.9500000e+02 3 2.9500000e+02 3 1.0000000e+00 1.0000000e+00
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MODEL DATA FOR EXAMPLE 8 (Continued)

18 2.2000000e-01 0 2.0500000e+02 3 19 13 59 60 61 81 79 82
2.9500000¢+02 3 2.9700500e+02 2 1,0000000e+00 1.0000000¢+00
19 1.1000000e+00 0 2.0000000e+01 4 16 20 25 23 26 27 28 29
0.0000000¢+00 3 0.0000000e+00 4 1.0000000e+0¢ 1.0000000e+00
20 0.0000000e+00 10 0.0000000e+00 4 20 21 27 28 29 32 30 34
0.0000000e+00 4 0.0000000e+00 4 1.0000000e+00 1.0000000e+00
21 1.8000000e+00 -10 0.0000000e+00 4 21 22 32 30 34 41 42 43
0.0000000¢+00 4 0.0000000e+00 4 1.0000000¢+00 1.0000000¢+00
22 0.0000000e+00 11 2.9200000e+02 4 22 23 41 42 43 71 68 72
0.0000000e+00 4 2.8048001e+02 4 1.0000000e+00 1.0000000e+00
23 1.2000000¢+00 -11 2.9200000e+02 4 23 24 71 68 72 56 57 58
2.8048001e+02 4 2.8048001e+02 4 1.0000000e+00 1.0000000e+00
24 2.8999999e-01 0 2.0200000e+02 4 24 18 56 57 58 75 74 77

2.8048001e+02 4 2.9500000e+02 3 1.0000000¢+00 1.0000000¢+00

25 1.1000000e+00 O 9.0000000e+01 5 21 25 33 31 34 35 36 37
0.0000000e+00 4 0.0000000e+00 5 1.0000000e+00 1.0000000e+00
26 1.8000000e+00 0 0.0000000¢+00 5 25 26 35 36 37 38 39 40
0.0000000e+00 5 0.0000000e+00 5 1.0000000e+00 1.0000000e+00
27 1.2000000e+00 ¢ 2.9100000e+02 5 26 27 38 39 40 53 54 55
0.0000000e+00 5 2.6512000e+02 5 1.0000000¢+00 1.0000000e+00
28 2.5999999¢-01 0 2.0100000e+02 5 27 23 53 54 55 70 69 72
2.6500000e+02 5 2.8048001e+02 4 1.0000000e+00 1.0000000e+00
29 0.0000000e+00 15 3.3000000¢+02 0 1 9 90 90 90 90 88 90
0.0000000e+00 0 -3.0000000e+01 0 0.0000000¢+00 0.0000000¢+00
30 2.2483001e+00 -6 1.9919440e+02 0 1 2 90 90 90 50 1 90
0.0000000e+00 O 1.9194401e+01 0 0.0000000e+00 0.0000000e+00
31 0.0000000e+00 6 1.9919440¢+02 0 2 3 90 1 90 90 50 90
1.9194401e+01 0 1.9194401e+01 0 0.0000000e+00 0.0000000e+00

Loops data. Each line with following order:
loop #, no. of elements in the loop,
elements numbers in the loop when traced in the CW direction
1 830 1 2 3 4 5 6-29

2 8 7 8 %910 11 12 -4 3
3 8 13 14 15 16 17 18 -10 -9
4 8 19 20 21 22 23 24 -16 -15
5 6 25 26 27 28 -22 21

The joints data. Each line with the following order:

joint# mass lumped at the joint,mass moment of inertia,# of elements in the path

elements numbers included in the path

1

O 00 -1 O\ LD

10
11

0.000000e+00
0.000000e+00
0.000000¢+00
0.000000e+00
0.000000e+00
0.000000c+00
0.000000e+00
0.000000e+00
0.000000e+00

0.000000e+00  0.000000e+00

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000¢+00
0.000000c¢+00
0.000000e+00
0.000000e+20
0.000000e+00

0

130
2 30 31
230 1
3301
429 6 -5
329-6-5
229 -6
129
4 30

1 27
0.000000e+00 0.000000e+00 530 1 2 7
12 0.000000e+00 0.000000e+00 6 30 1 2 7
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MODEL DATA FOR EXAMPLE & (Continued)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000¢+00
0.000000e+00
0.000000=+00
0.000000e+00
0.000000e+00
0.000000¢+00
0.000000e+00
0.000000e+00
0.000000e+00

0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000e+00

529 6 -5-12-11

429 6 -5-12

630 12 7 813
73012781314

830 1 2 7 8131415

729 -6 -5-12-11-18 -17

629 6 -5-12-11-18

8301 27 8131419

930 1 27 813141920
1030 1 2 7 81314192021
929 -6 -5-12-11-18-17-24 -23

8 29 -6 -5-12-11-18-17 -24

1030 1 2 7 81314192025
1130 12 7 8131419202526
1230 1 2 7 813 14 19 20 25 26 27

The variable length data. Each line with the following order:
joint# at which the var. mass is lumped,element# at one side,
element# at the other side,linear density of the link material

number of var. masses = 0 -> no data

The primary coordinates data. Each line with the following order:

primary coord#, initial position, initial velocity, global freedom# associated
with the primary coord., number of elements associated with the primary coord.
the elements’ numbers.

11
12
13
14
15

3.700000¢-01 0.000000e+00 69
3.700000e-01 0.000000e+00 74
2.200000e-01 0.000000¢+00 79
3.320000e-01 0.000000¢+00 84
2.500000e-01 0.000000e+00 88

[
= DD
A iyt

Initial conditions for the lagrangian coordinates:
(ti(k) : lagrangian coordinate number k)

ti(1)=
ti(2)=
Q)=
ti(d)=
1(3)=
ti(6y=
ti(7)=
ti(8)=
t(9)=

1.236000e-01
6.270000e-02
7.700000e-03
6.182700e+00
6.066100e+00
0.000000e+00
0.000000e+00
0.000000e+00
0.000000+00

ti(10)= 0.000000e+00
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Appendix B
The Listing of the Input Data for the _
Constramts External Loads, and Driving Forces & Torques

for the Eight Examples
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INPUT DATA FOR EXAMPLE 1: A SIMPLE PENDULUM

1. THE SIMPLE PENDULUM WITH FREE OSCILLATIONS

#uscons

+ ntc=Number of time dependent constraints.

. nsc=Number of spatial constraints.

ntc=0

nsc=0

te(i)=Time dependent motion generator.

pte(i,j)=It's partial derivative w.r.t coord. j

pttc(i)=It's partial derivative w.r.t. time

dptc(i,j)=The derivative of pte(i,j) w.r.t time

dpttc(i)=The derivative of pttc(i) w.r.t. time

sc(i)=Path & Length constraint

psc(ij)=It's partial derivative w.r.t coord. j

dpsc(i,j)=The derivative of psc(i,j) w.r.t. time

The value of nst is passed from the Analysis module to

- form the acceleration equations

if{nst=2)

goto 10

endif

- enter code here, for tc,ptc,pttc,sc & psc

: & with conditions

goto 20

10;

20:

return

#end

#usload

enter code here for

usl(i}=Externally applied load in direction of
freedom no. i

*
3
*
]
3
»

-

enter code here for dptc &/OR dpttc

return
#end
#drive
enter code here for
fpe(iy=Driving force or torque
i=index corresponds the order by which the input data fora
given driving load is given
- adding a damping force with C = 0 > free oscillations
fpe(1)=0
return
#end

2. THE SIMPLE PENDULUM WITH DAMPED OSCILLATIONS (C=0.5Co)

fuscons

ntc=Number of time dependent constraints.
. nsc=Number of spatial constraints.

ntc=0

nsc=0
. teti)=Time dependent motion generator.
pte(ij)=It's partial derivative w.r.t. coord. j
pitc(i)=It's partial derivative w.r.t. time
dpte(i,j)=The derivative of ptc(i,j) w.r.t time
dpttc(i)=The derivative of pttc(i) w.r.t. time

»
»
3
>
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3 sc(i)y=Path & Length constraint

y  psc(ij)=It's partial derivative w.r.t coord. j

;  dpsc(i,j)=The derivative of psc(i,j} w.r.t. time

;  The value of nst is passed from the Analysis module to
; form the acceleration equations

if(nst=2)

goto 10

endif

. enter code here, for tc,ptc,pttc,sc & psc

;& with conditions

goto 20

10;
20:
return
#end

enter code here for dpte &/OR dptte

#usload - - ' -

; enter code here for

;  usl(i)=Externally applied load in direction of

; freedom no. i

retum

#end

#drive

;  enter code here for

;  fpe(iy=Driving force or torque

: i=index corresponds the order by which the input data fora
; given driving load is given

; adding a damping force with C =0.5 Cc = 0.5*6.264184
fpe(1)=0.5%6.264184*tiv(1)

return

#end

3. THE SIMPLE PENDULUM WITH DAMPED OSCILLATIONS (C = Cc)

#hascons

;  ntc=Number of time dependent constraints,
;  nsc=Number of spatial constraints.

ntc=0

nsc=0

;  te(i)=Time dependent motion generator.

;  pte(i,j)=It's partial derivative w.r.t. coord. j

i ptte(i)=It's partial derivative w.r.t. time

;  dptc(i,j)=The derivative of ptc(i,j) w.r.t time
;  dptte(i)=The derivative of pttc(i) w.r.t. time
;  sc(iy=Path & Length constraint

7 psc(ij)=It's partial derivative w.r.t coord. j

;  dpsc(i,j)=The derivative of psc(i,j) w.r.t. time
;  The value of nst is passed from the Analysis module to
;  form the acceleration equations

if{nst=2)

goto 10

endif

;  enter code here, for tc,ptc,ptic,sc & psc
;& with conditions

goto 20

10:

; enter code here for dptc &/OR dpttc

20;
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return

#end

#usload

. enter code here for

;  usl{(i)=Externally applied load in direction of
| freedom no. 1

return

#end

#drive

;  enter code here for

1 fpc(i)=Driving force or torque

; i=index corresponds the order by which the input data for a
; given driving load is given

; adding a damping force with C = Cc =6.264184
fpc(1)=6.264184*tiv(1)

return

#end
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INPUT DATA FOR EXAMPLE 2; A DOUBLE PENDULUM.

#uscons

;  ntc=Number of time dependent constraints,
;. nsc=Number of spatial constraints,

nte=0

nsc=0

;  te(i)=Time dependent motion generator.

;  pte(ij)=It's partial derivative w.r.t. coord. j

. ptic(i)=It's partial derivative w.r.t. time

7 dpte(i,j)=The derivative of pte(i,j) w.r.t time
dpttc(i)=The derivative of pttc(i) w.r.t. time
;  sc(iy=Path & Length constraint

psc(i,j)=It's partial derivative w.r.t coord. j
dpsc(i,j)=The derivative of psc(i,j) w.r.t. time
The value of nst is passed from the Analysis module to
; form the acceleration equations :
if(nst=2)

goto 10

endif

;  enter code here, for tc,pte,ptic,sc & psc
;& with conditions

goto 20

10:

; enter code here for dptc &/OR. dpttc

20;

return

#end

#usload

. enter code here for

. usl(i)=Externally applied load in direction of
: freedom no. i

return

#end

#drive

. enter code here for

;  fpe(i)=Driving force or torque

; i=index corresponds the order by which the input data fora
; given driving load is given

fpc(1)=0

fpc(2)~0

return

#end

E)
»
*
»
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INPUT DATA FOR EXAMPLE 3: AUTOMOBILE ON A ROUGH ROAD,

#uscons

;  ntc=Number of time dependent constraints,

;  nsc=Number of spatial constraints.

nte=3

nsc=0 .

;  te(1)=Time dependent motion generator.

7 pte(i,j)=It's partial derivative w.r.t. coord. j

;. pttc(D=It's partial derivative w.r.t. time

;  dptc(i,j))=The derivative of ptc(i,j) w.r.t time
. dptte(i)=The derivative of ptic(i) w.r.t. time

;  sc(iy=Path & Length constraint

i psc(i,j)=It's partial derivative w.r.t coord. j

;  dpsc(i,j)=The derivative of psc(i,j} w.r.t. time
;  The value of nst is passed from the Analysis module to
;  form the acceleration equations . ~
if(nst=2)

goto 10

endif

;  enter code here, for tc,ptc, pttc,sc & psc
;& with conditions

tc(1)=550.*tm-108.-ti(1)

pte(l,1)=-1.

pttc(1)=550,

H(ti(1)<0)

te(2)=-ti(2)

pte(2,2)=-1.

else

if(ti(1)>=0)
tc(2)=6.*(k-cos(2*pi/360*ti(1)))-ti(2)
ptc(2,1)=6.*2*pi/360*sin{2*pi/360*ti(1))
pte(2,2)=-1.

endif

tc(3)=6.*(1.-cos(2*pi/360* (ti(1)+ti(4)))-ti(5)
pte(3,1)=6.%2*pi/360*sin(2 *pi/360*(ti(1)y+ti(4)))
pte(3,4)=6.*2*pi/360*sin(2*pifIGO*{ti(1)}+ti(4)))
ptc(3,5)=1.

10;

; enter code here for dptc &/OR dpttc
H{ti(1)<0)

dptc(2,2)=0.

else

if(ti(1)>=0)
dptc(2,1)=6*power(2*pi/360,2)*tiv(1)*cos(2 *pi/360*i(1))
dptc(2,2)=0.

endif
dptc(3,1)=6*power(2*pi/360,2)*(tiv{1)+tiv(4))*cos(2 *pi/3I60*(ti{ 1)+ti(4))
dptc(3,4)=6*power(2*pi/360,2) *(tiv(1)+tiv(4)) *cos(2*pi/360*(ti(1)+ti(4)))
dptc(3,5)=0.

return

#end

#usload

; enter code here for

:  usl(i)=Externally applied load in direction of
: freedomno. i

return

#end
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#drive

;  enter code here for

;  fpe(i)=Driving force or torque

; - i=index corresponds the order by which the input data for 2
; given driving load is given
fpc(1)=32500.*(20.-ti(6))-1000. *tiv(6)
fpo(2y=32500.*(20.-ti(7))-1000.*tiv(7)

return

#end

139

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



140

INPUT DATA FOR EXAMPLE 4: DISK CAM WITH RADIAL FLAT-FACED FOLLOWER

#uscons

; Disk Cam with Radial Flat-Faced Follower

;  ntce=Number of time dependent constraints.
;  nsc=Number of spatial constraints.

ntc=2

nsc={)

;  tc(@y=Time dependent motion generator.

;  pte(i,jy=1t's partial derivative w.r.t. coord. j
;  ptte(i)=It's partial derivative w.r.t. time

»  dpte(i,j)=The derivative of pte(i,j) w.r.t time
;  dpttc(i)=The derivative of pttc(i) w.r.t. time
sc(i)=Path & Length constraint

;  psc(ij)=It's partial derivative w.r.t coord. j

v dpsc(i,j)=The derivative of psc(i,j) w.r.t. ime
;  The value of nst is passed from the Analysis module to
;  form the acceleration equations

if{nst=2)

goto 10

endif

3 enter code here, for te,pic,ptte,sc & psc

;& with conditions

if((tm>=0) & (tm<=.25))

te(1)=.032-1i(1)

ptc(1,1)=-1.0

pttc(1)=0.0

clse

if((tm>.25)&(tm<.5))
te(1)=.0762/pi*(tm*2*pi*1.0-pi/2)-.0762/(4*pi)*sin(4 *tm*2*pi* 1-2*pi)-ti(1)+.032
pte(1,1)=-1.0

pttc(1)=.0762/pi*2*pi*1.0-
0762/(4*pi)*(cos(4*tm*2*pi*1)*4*2*pi*1.0*cos(2*pi)+sin(2*piy*cos(4 *tm*2*pi* 1)*4*¥2*pi*1)
else

if((tm>=.5) & (tm<=.75))

tc(1)=.0381-ti(1)+.032

pte(1,1)=-1.0

e 431820

if{(tm>.75) & (tm<=1.0))

te(1)=.0381*(1.0-(tm*2*pi-3 *pi/2)/(pi/2)+1/(2 *pi)*sin(4 *2 *pi*tm-6*pi))-ti(1)+.032
pte(1,1)=-1.0

pttc(1)=.0381*(2*pi+1/(2*pi)*(cos(4*2*pi*tm)*4*2 *pi*cos(6*pi)+sin(6*pi)*cos(4*2*pi*tm)*4*2 *pi))
endif

te(2)=.140-ti(1)-ti(2)

pte(2,1)=-1

pte(2,2)=-1

ptte(2)=0

goto 20

10:

; enter code here for dptc &/OR dpttc

if{{tm>=0) & (tm<=.25))

dpttc(1)=0

endif

if((tm>.25) & (tm<.5))

dpitc(1)=.0762/(4*pi)*(-1*sin(4*tm*2*pi*1)*4*2*pi* 1.0*4*2*pi*cos(2*pi)-
sin(2*pi)*sin(4*tm*2*pi*1)*4*2*pi* 1 *4*2*pi*1)

endif

. e
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if((tm>=5) & (tm<=.75))

dpttc(1)=0.0

endif

if({tm>75) & (tm<=1.0))
dpttc(1)=.0381*1/(2*pi)*(-1*sin(4*2*pi*tm)*4*2*pi*4*2*pi*cos(6*pi)-
sin(6*pi)*sin(4*2*pi*tm)*4*2*pi*4*2*pi})
endif

dptte(2)=0

20:

returmn

flend

#usload

;  enter code here for

;  usl(i}=Externally applied load in direction of
4 freedom no. i

usl(1)=-500*(ti(2)-.108)

© return

#end

#drive

;  enter code here for

;  fpc(i)=Driving force or torque

; i=index corresponds the order by which the input data fora
; given driving load is given
return

#end
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INPUT DATA FOR EXAMPLE 5. A 3-R MIXED-LOOP PLANAR ROBOT

#uscons

;  ntc=Number of time dependent constraints.
;  nsc=Number of spatial constraints.

ntc=1

nsc=1

;  te(D)=Time dependent motion generator,

; pte(i,j)=It's partial derivative w.r.t. coord. j

;  pttc(i)=It's partial derivative w.r.t. time
dpte(i,j)=The derivative of ptc(i,j) w.r.t time
dpttc(i)=The derivative of pttc(i) w.r.t. time
sc(i)=Path & Length constraint

psc(i,j)=It's partial derivative w.r.t coord. j
dpsc(i,j)=The derivative of psc(i,j) w.r.t. time
The value of nst is passed from the Analysis module to
form the acceleration equations :
if(nst=2)

goto 10

endif

,  enter code here, for tc,ptc,ptic,sc & psc
;& with conditions
te(1)=2*pi*sin(.3927*tm)+1.5708-ti(3)
pte(1,3)=-1.0

pttc(1)=2.4674%cos(.3927*tm)

sc(1)=-ti(4)

psc(l,4)=-1

goto 20

10:

; enter code here for dptc &/OR dpttc
dptic(1)=-.9689*sin(.3927*tm)

20:

return

#end

#usload

;  enter code here for

;  usl(i)=Externally applied load in direction of
; freedom no. i

returm

#end

#drive

;  enter code here for

;  fpe(i)=Driving force or torque

N i=index corresponds the order by which the input data fora
; given driving load is given

return

flend
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INPUT DATA FOR EXAMPLE 6: A SLIDER CRANK MECHANISM

#uscons

;  ntc=Number of time dependent constraints.
;  nsc=Number of spatial constraints.
nte=0

nsc=0

if(ti(3)>45)

ti(3)=45.0

endif
;  te(i)=Time dependent motion generator.

pte(i,j)=It's partial derivative w.r.t. coord. j
pttc(i}=It's partial derivative w.r.t. time

dptc(i.j=The derivative of pte(i,j) w.r.t time
dpttc(i)=The derivative of pitc{i) w.r.t. time
sc(i)=Path & Length constraint

psc(i,j)=It's partial derivative w.r.t coord. j
dpsc(i,j)=The derivative of pse(i,j) w.r.t. time

The value of nst is passed from the Analysis module to
form the acceleration equations

if(nst=2)

goto 10

endif

; enter code here, for t¢,pte,ptic,sc & psc

; & with conditions

goto 20

10:

; enter code here for dptc &/0OR dptte

20;

return

#end

#usload

3 enter code here for

;  usl(i)=Externally applied load in direction of

; freedom no. i

return

#end

#drive

5 enter code here for

;  fpc(i)=Driving force or torque

: i=index corresponds the order by which the input data fora
; given driving load is given
fpc(1)=1.*%(36.-ti(3))*11.4

return

#end
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INPUT DATA FOR EXAMPLE 7: A 3R ROBOT UNDER GRAVITY EFFECT

#uscons

;  nte=Number of time dependent constraints.

;  nsc=Number of spatial constraints.

nte=0

ns¢=0

;  tc(i)=Time dependent motion generator.

;  ptc(ij)=It's partial derivative w.r.t. coord. j

;  ptte(D)=It's partial derivative w.r.t. time

y  dptc(i,j)=The derivative of ptc(i,j) w.r.t time
;  dptte(i)=The derivative of pttc(i} w.r.t. time

;  sc(i)=Path & Length constraint

i psc(ij)=It's partial derivative w.r.t coord. j

i dpsc(i,j)=The derivative of psc(i,j) w.r.t, time
;  The value of nst is passed from the Analysis module to
; form the acceleration equations

1f(nst—2)

goto 10

endif

;  enter code here, for tc,ptc,ptic,sc & psc

; & with conditions

goto 20

10:

; enter code here for dptc &/OR dpttc

20;

return

#end

#usload

; enter code here for

;  usl(i)=Externally applied load in direction of
; freedom no. i

return

#end

#drive

;  enter code here for

;  fpc(i)=Driving force or torque

; i=index corresponds the order by which the input data for a
: given driving load is given

return

#end
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INPUT DATA FOR EXAMPLE 8: AN APPLICATION TO THE HUMAN SPINE

1. THE INPUT DATA FOR LOADING SET #1

#uscons

;  ntc=Number of time dependent constraints.
,  nsc=Number of spatial constraints,

nte=0

nsc=0

i te(i)=Time dependent motion generator.

»  pte(ij)=It's partial derivative w.r.t. coord. j
; ptc(i)=It's partial derivative w.r.t. time

;  dpte(i,j)=The derivative of ptc(i,j) w.r.t time
;  dptte(i)=The derivative of pttc(i) w.r.t. time
;  sc(i)=Path & Length constraint

;  psc(i,j)=It's partial derivative w.r.t coord. j
-y dpsc(i,j)=The derivative of psc(i,j) w.r.t. time
;  The value of nst is passed from the Analysis module to
;  form the acceleration equations

if(nst=2)

goto 10

endif

;  enter code here, for tc,pte,ptic,s¢ & psc
;& with conditions

goto 20

10:

; enter code here for dptc &/OR dpttc

20:

return

#end

#usload

;  enter code here for

,  usl{i)=Externally applied load in direction of
; freedom no. i

usl(36)=10

return

#end

#drive

;  enter code here for

;  Ipc(i)=Driving force or torque

; i=index corresponds the order by which the input data fora
; given driving load is given
fpe(1)=(0.370-ti(11))*100.0
fpc(2)=(0.370-ti(12))*100.0
fpc(3)=(0.370-1i(13))*100.0
fpe(4)=(0.332-ti(14))*100.0
fpc(5)=(0.250-ti(15))*100.0

return

#end

1. THE INPUT DATA FOR LOADING SET #2

#uscons

;  nic=Number of time dependent constraints.
;  nsc=Number of spatial constraints.

nte=0

nsc=0
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;  te(i)=Time dependent motion gencrator.

;  pte(i,jy=It's partial derivative w.r.t. coord.

. pttc(i)=It's partial derivative w.r.t. time

i dpte(i,j)=The derivative of ptc(i,j) w.r.t time
;  dptte(i)=The derivative of pttc(i) w.r.t. time
;  sc{i)=Path & Length constraint

;  psc(i,j)=It's partial derivative w.r.t coord. j

;  dpsc(ij)=The derivative of psc(i,j) w.r.t. time
;  The value of nst is passed from the Analysis module to
;  form the acceleration equations

if{nst=2)

goto 10

endif

; enter code here, for tc,pte,ptte,sc & pse
;& with conditions

goto 20

10;

; enter code here for dptc &/OR. dpttc

20:

return

#end

#usload

; enter code here for

. usl(i}=Externally applied load in direction of
; freedom no. i

usl{(35)=5

usl(37)=-5

usl(39)=10

usl(40)=-7

return

#end

#drive

;  enter code here for

;  fpc(i)=Driving force or torque

; t=index corresponds the order by which the input data fora
) given driving load is given
fpe(1)=(0.370-ti(11))*100.0
fpe(2)=(0.370-ti(12))*100.0
fpe(3)=(0.370-ti(13))*100.0
fpc(4)=(0.332-ti(14))*100.0
fpc(5)=(0.250-ti(15))*100.0

return

#end
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